dc.contributor.author | de Cataldo, Mark A. | |
dc.contributor.author | Maulik, Davesh | |
dc.contributor.author | Shen, Junliang | |
dc.date.accessioned | 2022-10-14T13:16:44Z | |
dc.date.available | 2022-10-14T13:16:44Z | |
dc.date.issued | 2022-10-13 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/145826 | |
dc.description.abstract | Abstract
Let p be a prime number. We prove that the
$$P=W$$
P
=
W
conjecture for
$$\mathrm {SL}_p$$
SL
p
is equivalent to the
$$P=W$$
P
=
W
conjecture for
$$\mathrm {GL}_p$$
GL
p
. As a consequence, we verify the
$$P=W$$
P
=
W
conjecture for genus 2 and
$$\mathrm {SL}_p$$
SL
p
. For the proof, we compute the perverse filtration and the weight filtration for the variant cohomology associated with the
$$\mathrm {SL}_p$$
SL
p
-Hitchin moduli space and the
$$\mathrm {SL}_p$$
SL
p
-twisted character variety, relying on Gröchenig–Wyss–Ziegler’s recent proof of the topological mirror conjecture by Hausel–Thaddeus. Finally we discuss obstructions of studying the cohomology of the
$$\mathrm {SL}_n$$
SL
n
-Hitchin moduli space via compact hyper-Kähler manifolds. | en_US |
dc.publisher | Springer International Publishing | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s00029-022-00803-0 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Springer International Publishing | en_US |
dc.title | On the P = W conjecture for $$SL_n$$ S L n | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Selecta Mathematica. 2022 Oct 13;28(5):90 | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2022-10-14T03:14:48Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s), under exclusive licence to Springer Nature Switzerland AG | |
dspace.embargo.terms | Y | |
dspace.date.submission | 2022-10-14T03:14:48Z | |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |