MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Patterns without a popular difference

Author(s)
Sah, Ashwin; Sawhney, Mehtaab; Zhao, Yufei
Thumbnail
DownloadPublished version (433.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Which finite sets $P \subseteq \mathbb{Z}^r$ with $|P| \ge 3$ have the following property: for every $A \subseteq [N]^r$, there is some nonzero integer $d$ such that $A$ contains $(\alpha^{|P|} - o(1))N^r$ translates of $d \cdot P = \{d p : p \in P\}$, where $\alpha = |A|/N^r$? Green showed that all 3-point $P \subseteq \mathbb{Z}$ have the above property. Green and Tao showed that 4-point sets of the form $P = \{a, a+b, a+c, a+b+c\} \subseteq \mathbb{Z}$ also have the property. We show that no other sets have the above property. Furthermore, for various $P$, we provide new upper bounds on the number of translates of $d \cdot P$ that one can guarantee to find.
URI
https://hdl.handle.net/1721.1/145889
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Discrete Analysis, 2021:8, 30 pp
Publisher
Alliance of Diamond Open Access Journals
Citation
Sah, Ashwin, Sawhney, Mehtaab and Zhao, Yufei. "Patterns without a popular difference." Discrete Analysis, 2021:8, 30 pp, 2021.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.