Show simple item record

dc.contributor.authorSah, Ashwin
dc.contributor.authorSawhney, Mehtaab
dc.contributor.authorZhao, Yufei
dc.date.accessioned2022-10-18T16:39:29Z
dc.date.available2022-10-18T16:39:29Z
dc.identifier.urihttps://hdl.handle.net/1721.1/145889
dc.description.abstractWhich finite sets $P \subseteq \mathbb{Z}^r$ with $|P| \ge 3$ have the following property: for every $A \subseteq [N]^r$, there is some nonzero integer $d$ such that $A$ contains $(\alpha^{|P|} - o(1))N^r$ translates of $d \cdot P = \{d p : p \in P\}$, where $\alpha = |A|/N^r$? Green showed that all 3-point $P \subseteq \mathbb{Z}$ have the above property. Green and Tao showed that 4-point sets of the form $P = \{a, a+b, a+c, a+b+c\} \subseteq \mathbb{Z}$ also have the property. We show that no other sets have the above property. Furthermore, for various $P$, we provide new upper bounds on the number of translates of $d \cdot P$ that one can guarantee to find.en_US
dc.language.isoen
dc.publisherAlliance of Diamond Open Access Journalsen_US
dc.relation.isversionof10.19086/da.25317en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourcearXiven_US
dc.titlePatterns without a popular differenceen_US
dc.typeArticleen_US
dc.identifier.citationSah, Ashwin, Sawhney, Mehtaab and Zhao, Yufei. "Patterns without a popular difference." Discrete Analysis, 2021:8, 30 pp, 2021.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalDiscrete Analysis, 2021:8, 30 ppen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-18T16:30:07Z
dspace.orderedauthorsSah, A; Sawhney, M; Zhao, Yen_US
dspace.date.submission2022-10-18T16:30:09Z
mit.journal.volume2021en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record