MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Equiangular lines with a fixed angle

Author(s)
Jiang, Zilin; Tidor, Jonathan; Yao, Yuan; Zhang, Shengtong; Zhao, Yufei
Thumbnail
DownloadAccepted version (194.1Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Solving a longstanding problem on equiangular lines, we determine, for each given fixed angle and in all sufficiently large dimensions, the maximum number of lines pairwise separated by the given angle. Fix $0 < \alpha < 1$. Let $N_\alpha(d)$ denote the maximum number of lines through the origin in $\mathbb{R}^d$ with pairwise common angle $\arccos \alpha$. Let $k$ denote the minimum number (if it exists) of vertices in a graph whose adjacency matrix has spectral radius exactly $(1-\alpha)/(2\alpha)$. If $k < \infty$, then $N_\alpha(d) = \lfloor k(d-1)/(k-1) \rfloor$ for all sufficiently large $d$, and otherwise $N_\alpha(d) = d + o(d)$. In particular, $N_{1/(2k-1)}(d) = \lfloor k(d-1)/(k-1) \rfloor$ for every integer $k\ge 2$ and all sufficiently large $d$. A key ingredient is a new result in spectral graph theory: the adjacency matrix of a connected bounded degree graph has sublinear second eigenvalue multiplicity.
Date issued
2021
URI
https://hdl.handle.net/1721.1/145892
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Annals of Mathematics
Publisher
Annals of Mathematics
Citation
Jiang, Zilin, Tidor, Jonathan, Yao, Yuan, Zhang, Shengtong and Zhao, Yufei. 2021. "Equiangular lines with a fixed angle." Annals of Mathematics, 194 (3).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.