| dc.contributor.author | Jiang, Zilin | |
| dc.contributor.author | Tidor, Jonathan | |
| dc.contributor.author | Yao, Yuan | |
| dc.contributor.author | Zhang, Shengtong | |
| dc.contributor.author | Zhao, Yufei | |
| dc.date.accessioned | 2022-10-18T17:05:58Z | |
| dc.date.available | 2022-10-18T17:05:58Z | |
| dc.date.issued | 2021 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/145892 | |
| dc.description.abstract | Solving a longstanding problem on equiangular lines, we determine, for each
given fixed angle and in all sufficiently large dimensions, the maximum number
of lines pairwise separated by the given angle.
Fix $0 < \alpha < 1$. Let $N_\alpha(d)$ denote the maximum number of lines
through the origin in $\mathbb{R}^d$ with pairwise common angle $\arccos
\alpha$. Let $k$ denote the minimum number (if it exists) of vertices in a
graph whose adjacency matrix has spectral radius exactly
$(1-\alpha)/(2\alpha)$. If $k < \infty$, then $N_\alpha(d) = \lfloor
k(d-1)/(k-1) \rfloor$ for all sufficiently large $d$, and otherwise
$N_\alpha(d) = d + o(d)$. In particular, $N_{1/(2k-1)}(d) = \lfloor
k(d-1)/(k-1) \rfloor$ for every integer $k\ge 2$ and all sufficiently large
$d$.
A key ingredient is a new result in spectral graph theory: the adjacency
matrix of a connected bounded degree graph has sublinear second eigenvalue
multiplicity. | en_US |
| dc.language.iso | en | |
| dc.publisher | Annals of Mathematics | en_US |
| dc.relation.isversionof | 10.4007/ANNALS.2021.194.3.3 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | Equiangular lines with a fixed angle | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Jiang, Zilin, Tidor, Jonathan, Yao, Yuan, Zhang, Shengtong and Zhao, Yufei. 2021. "Equiangular lines with a fixed angle." Annals of Mathematics, 194 (3). | |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.relation.journal | Annals of Mathematics | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2022-10-18T16:56:38Z | |
| dspace.orderedauthors | Jiang, Z; Tidor, J; Yao, Y; Zhang, S; Zhao, Y | en_US |
| dspace.date.submission | 2022-10-18T16:56:40Z | |
| mit.journal.volume | 194 | en_US |
| mit.journal.issue | 3 | en_US |
| mit.license | OPEN_ACCESS_POLICY | |
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |