Show simple item record

dc.contributor.authorJiang, Zilin
dc.contributor.authorTidor, Jonathan
dc.contributor.authorYao, Yuan
dc.contributor.authorZhang, Shengtong
dc.contributor.authorZhao, Yufei
dc.date.accessioned2022-10-18T17:05:58Z
dc.date.available2022-10-18T17:05:58Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/145892
dc.description.abstractSolving a longstanding problem on equiangular lines, we determine, for each given fixed angle and in all sufficiently large dimensions, the maximum number of lines pairwise separated by the given angle. Fix $0 < \alpha < 1$. Let $N_\alpha(d)$ denote the maximum number of lines through the origin in $\mathbb{R}^d$ with pairwise common angle $\arccos \alpha$. Let $k$ denote the minimum number (if it exists) of vertices in a graph whose adjacency matrix has spectral radius exactly $(1-\alpha)/(2\alpha)$. If $k < \infty$, then $N_\alpha(d) = \lfloor k(d-1)/(k-1) \rfloor$ for all sufficiently large $d$, and otherwise $N_\alpha(d) = d + o(d)$. In particular, $N_{1/(2k-1)}(d) = \lfloor k(d-1)/(k-1) \rfloor$ for every integer $k\ge 2$ and all sufficiently large $d$. A key ingredient is a new result in spectral graph theory: the adjacency matrix of a connected bounded degree graph has sublinear second eigenvalue multiplicity.en_US
dc.language.isoen
dc.publisherAnnals of Mathematicsen_US
dc.relation.isversionof10.4007/ANNALS.2021.194.3.3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleEquiangular lines with a fixed angleen_US
dc.typeArticleen_US
dc.identifier.citationJiang, Zilin, Tidor, Jonathan, Yao, Yuan, Zhang, Shengtong and Zhao, Yufei. 2021. "Equiangular lines with a fixed angle." Annals of Mathematics, 194 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalAnnals of Mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-18T16:56:38Z
dspace.orderedauthorsJiang, Z; Tidor, J; Yao, Y; Zhang, S; Zhao, Yen_US
dspace.date.submission2022-10-18T16:56:40Z
mit.journal.volume194en_US
mit.journal.issue3en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record