MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Induced arithmetic removal: complexity 1 patterns over finite fields

Author(s)
Fox, Jacob; Tidor, Jonathan; Zhao, Yufei
Thumbnail
DownloadSubmitted version (356.3Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We prove an arithmetic analog of the induced graph removal lemma for complexity 1 patterns over finite fields. Informally speaking, we show that given a fixed collection of $r$-colored complexity 1 arithmetic patterns over $\mathbb F_q$, every coloring $\phi \colon \mathbb F_q^n \setminus\{0\} \to [r]$ with $o(1)$ density of every such pattern can be recolored on an $o(1)$-fraction of the space so that no such pattern remains.
Date issued
2022
URI
https://hdl.handle.net/1721.1/145896
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Israel Journal of Mathematics
Publisher
Springer Science and Business Media LLC
Citation
Fox, Jacob, Tidor, Jonathan and Zhao, Yufei. 2022. "Induced arithmetic removal: complexity 1 patterns over finite fields." Israel Journal of Mathematics, 248 (1).
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.