Show simple item record

dc.contributor.authorFox, Jacob
dc.contributor.authorTidor, Jonathan
dc.contributor.authorZhao, Yufei
dc.date.accessioned2022-10-18T17:21:28Z
dc.date.available2022-10-18T17:21:28Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/145896
dc.description.abstractWe prove an arithmetic analog of the induced graph removal lemma for complexity 1 patterns over finite fields. Informally speaking, we show that given a fixed collection of $r$-colored complexity 1 arithmetic patterns over $\mathbb F_q$, every coloring $\phi \colon \mathbb F_q^n \setminus\{0\} \to [r]$ with $o(1)$ density of every such pattern can be recolored on an $o(1)$-fraction of the space so that no such pattern remains.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/S11856-022-2290-Xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleInduced arithmetic removal: complexity 1 patterns over finite fieldsen_US
dc.typeArticleen_US
dc.identifier.citationFox, Jacob, Tidor, Jonathan and Zhao, Yufei. 2022. "Induced arithmetic removal: complexity 1 patterns over finite fields." Israel Journal of Mathematics, 248 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalIsrael Journal of Mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-10-18T17:17:26Z
dspace.orderedauthorsFox, J; Tidor, J; Zhao, Yen_US
dspace.date.submission2022-10-18T17:17:27Z
mit.journal.volume248en_US
mit.journal.issue1en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record