Show simple item record

dc.contributor.authorBiancalani, Tommaso
dc.contributor.authorScalia, Gabriele
dc.contributor.authorBuffoni, Lorenzo
dc.contributor.authorAvasthi, Raghav
dc.contributor.authorLu, Ziqing
dc.contributor.authorSanger, Aman
dc.contributor.authorTokcan, Neriman
dc.contributor.authorVanderburg, Charles R
dc.contributor.authorSegerstolpe, Åsa
dc.contributor.authorZhang, Meng
dc.contributor.authorAvraham-Davidi, Inbal
dc.contributor.authorVickovic, Sanja
dc.contributor.authorNitzan, Mor
dc.contributor.authorMa, Sai
dc.contributor.authorSubramanian, Ayshwarya
dc.contributor.authorLipinski, Michal
dc.contributor.authorBuenrostro, Jason
dc.contributor.authorBrown, Nik Bear
dc.contributor.authorFanelli, Duccio
dc.contributor.authorZhuang, Xiaowei
dc.contributor.authorMacosko, Evan Z
dc.contributor.authorRegev, Aviv
dc.date.accessioned2023-01-13T14:13:43Z
dc.date.available2023-01-13T14:13:43Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/147094
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Charting an organs’ biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehensively, but lose spatial information. Spatial transcriptomics allows for spatial measurements, but at lower resolution and with limited sensitivity. Targeted in situ technologies solve both issues, but are limited in gene throughput. To overcome these limitations we present Tangram, a method that aligns sc/snRNA-seq data to various forms of spatial data collected from the same region, including MERFISH, STARmap, smFISH, Spatial Transcriptomics (Visium) and histological images. Tangram can map any type of sc/snRNA-seq data, including multimodal data such as those from SHARE-seq, which we used to reveal spatial patterns of chromatin accessibility. We demonstrate Tangram on healthy mouse brain tissue, by reconstructing a genome-wide anatomically integrated spatial map at single-cell resolution of the visual and somatomotor areas.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41592-021-01264-7en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleDeep learning and alignment of spatially resolved single-cell transcriptomes with Tangramen_US
dc.typeArticleen_US
dc.identifier.citationBiancalani, Tommaso, Scalia, Gabriele, Buffoni, Lorenzo, Avasthi, Raghav, Lu, Ziqing et al. 2021. "Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram." Nature Methods, 18 (11).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.relation.journalNature Methodsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-13T14:05:42Z
dspace.orderedauthorsBiancalani, T; Scalia, G; Buffoni, L; Avasthi, R; Lu, Z; Sanger, A; Tokcan, N; Vanderburg, CR; Segerstolpe, Å; Zhang, M; Avraham-Davidi, I; Vickovic, S; Nitzan, M; Ma, S; Subramanian, A; Lipinski, M; Buenrostro, J; Brown, NB; Fanelli, D; Zhuang, X; Macosko, EZ; Regev, Aen_US
dspace.date.submission2023-01-13T14:05:59Z
mit.journal.volume18en_US
mit.journal.issue11en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record