MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Beneficial and detrimental genes in the cellular response to replication arrest

Author(s)
Schons-Fonseca, Luciane; Lazova, Milena D; Smith, Janet L; Anderson, Mary E; Grossman, Alan D
Thumbnail
DownloadPublished version (1.407Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:p>DNA replication is essential for all living organisms. Several events can disrupt replication, including DNA damage (e.g., pyrimidine dimers, crosslinking) and so-called “roadblocks” (e.g., DNA-binding proteins or transcription). Bacteria have several well-characterized mechanisms for repairing damaged DNA and then restoring functional replication forks. However, little is known about the repair of stalled or arrested replication forks in the absence of chemical alterations to DNA. Using a library of random transposon insertions in <jats:italic>Bacillus subtilis</jats:italic>, we identified 35 genes that affect the ability of cells to survive exposure to an inhibitor that arrests replication elongation, but does not cause chemical alteration of the DNA. Genes identified include those involved in iron-sulfur homeostasis, cell envelope biogenesis, and DNA repair and recombination. In <jats:italic>B</jats:italic>. <jats:italic>subtilis</jats:italic>, and many bacteria, two nucleases (AddAB and RecJ) are involved in early steps in repairing replication forks arrested by chemical damage to DNA and loss of either nuclease causes increased sensitivity to DNA damaging agents. These nucleases resect DNA ends, leading to assembly of the recombinase RecA onto the single-stranded DNA. Notably, we found that disruption of <jats:italic>recJ</jats:italic> increased survival of cells following replication arrest, indicating that in the absence of chemical damage to DNA, RecJ is detrimental to survival. In contrast, and as expected, disruption of <jats:italic>addA</jats:italic> decreased survival of cells following replication arrest, indicating that AddA promotes survival. The different phenotypes of <jats:italic>addA</jats:italic> and <jats:italic>recJ</jats:italic> mutants appeared to be due to differences in assembly of RecA onto DNA. RecJ appeared to promote too much assembly of RecA filaments. Our results indicate that in the absence of chemical damage to DNA, RecA is dispensable for cells to survive replication arrest and that the stable RecA nucleofilaments favored by the RecJ pathway may lead to cell death by preventing proper processing of the arrested replication fork.</jats:p>
Date issued
2022-12
URI
https://hdl.handle.net/1721.1/147185
Department
Massachusetts Institute of Technology. Department of Biology
Journal
PLOS Genetics
Publisher
Public Library of Science (PLoS)
Citation
Schons-Fonseca, Luciane, Lazova, Milena D, Smith, Janet L, Anderson, Mary E and Grossman, Alan D. 2022. "Beneficial and detrimental genes in the cellular response to replication arrest." PLOS Genetics, 18 (12).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.