MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interpreting radial correlation doppler reflectometry using gyrokinetic simulations

Author(s)
Ruiz Ruiz, J; Parra, FI; Hall-Chen, VH; Christen, N; Barnes, M; Candy, J; Garcia, J; Giroud, C; Guttenfelder, W; Hillesheim, JC; Holland, C; Howard, NT; Ren, Y; White, AE; ... Show more Show less
Thumbnail
DownloadPublished version (4.022Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
A linear response, local model for the DBS amplitude applied to gyrokinetic simulations shows that radial correlation Doppler reflectometry measurements (RCDR, Schirmer et al 2007 Plasma Phys. Control. Fusion 49 1019) are not sensitive to the average turbulence radial correlation length, but to a correlation length that depends on the binormal wavenumber k⊥ selected by the Doppler backscattering (DBS) signal. Nonlinear gyrokinetic simulations show that the turbulence naturally exhibits a nonseparable power law spectrum in wavenumber space, leading to a power law dependence of the radial correlation length with binormal wavenumber lr ∼ Ck−α ⊥ (α ≈ 1) which agrees with the inverse proportionality relationship between the measured lr and k⊥ observed in experiments (Fern´andez-Marina et al 2014 Nucl. Fusion 54 072001). This new insight indicates that RCDR characterizes the eddy aspect ratio in the perpendicular plane to the magnetic field. It also motivates future use of a nonseparable turbulent spectrum to quantitatively interpret RCDR and potentially other turbulence diagnostics. The radial correlation length is only measurable when the radial resolution at the cutoff location Wn satisfies Wn ≪ lr , while the measurement becomes dominated by Wn for Wn ≫ lr . This suggests that lr is likely to be inaccessible for electron-scale DBS measurements (k⊥ρs > 1). The effect of Wn on ion-scale radial correlation lengths could be nonnegligible.
Date issued
2022
URI
https://hdl.handle.net/1721.1/147632
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Plasma Physics and Controlled Fusion
Publisher
IOP Publishing
Citation
Ruiz Ruiz, J, Parra, FI, Hall-Chen, VH, Christen, N, Barnes, M et al. 2022. "Interpreting radial correlation doppler reflectometry using gyrokinetic simulations." Plasma Physics and Controlled Fusion, 64 (5).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.