Show simple item record

dc.contributor.authorRuiz Ruiz, J
dc.contributor.authorParra, FI
dc.contributor.authorHall-Chen, VH
dc.contributor.authorChristen, N
dc.contributor.authorBarnes, M
dc.contributor.authorCandy, J
dc.contributor.authorGarcia, J
dc.contributor.authorGiroud, C
dc.contributor.authorGuttenfelder, W
dc.contributor.authorHillesheim, JC
dc.contributor.authorHolland, C
dc.contributor.authorHoward, NT
dc.contributor.authorRen, Y
dc.contributor.authorWhite, AE
dc.date.accessioned2023-01-23T15:48:56Z
dc.date.available2023-01-23T15:48:56Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/147632
dc.description.abstractA linear response, local model for the DBS amplitude applied to gyrokinetic simulations shows that radial correlation Doppler reflectometry measurements (RCDR, Schirmer et al 2007 Plasma Phys. Control. Fusion 49 1019) are not sensitive to the average turbulence radial correlation length, but to a correlation length that depends on the binormal wavenumber k⊥ selected by the Doppler backscattering (DBS) signal. Nonlinear gyrokinetic simulations show that the turbulence naturally exhibits a nonseparable power law spectrum in wavenumber space, leading to a power law dependence of the radial correlation length with binormal wavenumber lr ∼ Ck−α ⊥ (α ≈ 1) which agrees with the inverse proportionality relationship between the measured lr and k⊥ observed in experiments (Fern´andez-Marina et al 2014 Nucl. Fusion 54 072001). This new insight indicates that RCDR characterizes the eddy aspect ratio in the perpendicular plane to the magnetic field. It also motivates future use of a nonseparable turbulent spectrum to quantitatively interpret RCDR and potentially other turbulence diagnostics. The radial correlation length is only measurable when the radial resolution at the cutoff location Wn satisfies Wn ≪ lr , while the measurement becomes dominated by Wn for Wn ≫ lr . This suggests that lr is likely to be inaccessible for electron-scale DBS measurements (k⊥ρs > 1). The effect of Wn on ion-scale radial correlation lengths could be nonnegligible.en_US
dc.language.isoen
dc.publisherIOP Publishingen_US
dc.relation.isversionof10.1088/1361-6587/AC5916en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceIOP Publishingen_US
dc.titleInterpreting radial correlation doppler reflectometry using gyrokinetic simulationsen_US
dc.typeArticleen_US
dc.identifier.citationRuiz Ruiz, J, Parra, FI, Hall-Chen, VH, Christen, N, Barnes, M et al. 2022. "Interpreting radial correlation doppler reflectometry using gyrokinetic simulations." Plasma Physics and Controlled Fusion, 64 (5).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.relation.journalPlasma Physics and Controlled Fusionen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-23T14:51:40Z
dspace.orderedauthorsRuiz Ruiz, J; Parra, FI; Hall-Chen, VH; Christen, N; Barnes, M; Candy, J; Garcia, J; Giroud, C; Guttenfelder, W; Hillesheim, JC; Holland, C; Howard, NT; Ren, Y; White, AEen_US
dspace.date.submission2023-01-23T14:51:44Z
mit.journal.volume64en_US
mit.journal.issue5en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record