MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial neural networks enable genome-scale simulations of intracellular signaling

Author(s)
Nilsson, Avlant; Peters, Joshua M; Meimetis, Nikolaos; Bryson, Bryan; Lauffenburger, Douglas A
Thumbnail
DownloadPublished version (4.156Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Mammalian cells adapt their functional state in response to external signals in form of ligands that bind receptors on the cell-surface. Mechanistically, this involves signal-processing through a complex network of molecular interactions that govern transcription factor activity patterns. Computer simulations of the information flow through this network could help predict cellular responses in health and disease. Here we develop a recurrent neural network framework constrained by prior knowledge of the signaling network with ligand-concentrations as input and transcription factor-activity as output. Applied to synthetic data, it predicts unseen test-data (Pearson correlation <jats:italic>r</jats:italic> = 0.98) and the effects of gene knockouts (<jats:italic>r</jats:italic> = 0.8). We stimulate macrophages with 59 different ligands, with and without the addition of lipopolysaccharide, and collect transcriptomics data. The framework predicts this data under cross-validation (<jats:italic>r</jats:italic> = 0.8) and knockout simulations suggest a role for RIPK1 in modulating the lipopolysaccharide response. This work demonstrates the feasibility of genome-scale simulations of intracellular signaling.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/147780
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC
Citation
Nilsson, Avlant, Peters, Joshua M, Meimetis, Nikolaos, Bryson, Bryan and Lauffenburger, Douglas A. 2022. "Artificial neural networks enable genome-scale simulations of intracellular signaling." Nature Communications, 13 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.