Show simple item record

dc.contributor.authorNilsson, Avlant
dc.contributor.authorPeters, Joshua M
dc.contributor.authorMeimetis, Nikolaos
dc.contributor.authorBryson, Bryan
dc.contributor.authorLauffenburger, Douglas A
dc.date.accessioned2023-01-30T15:13:18Z
dc.date.available2023-01-30T15:13:18Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/147780
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Mammalian cells adapt their functional state in response to external signals in form of ligands that bind receptors on the cell-surface. Mechanistically, this involves signal-processing through a complex network of molecular interactions that govern transcription factor activity patterns. Computer simulations of the information flow through this network could help predict cellular responses in health and disease. Here we develop a recurrent neural network framework constrained by prior knowledge of the signaling network with ligand-concentrations as input and transcription factor-activity as output. Applied to synthetic data, it predicts unseen test-data (Pearson correlation <jats:italic>r</jats:italic> = 0.98) and the effects of gene knockouts (<jats:italic>r</jats:italic> = 0.8). We stimulate macrophages with 59 different ligands, with and without the addition of lipopolysaccharide, and collect transcriptomics data. The framework predicts this data under cross-validation (<jats:italic>r</jats:italic> = 0.8) and knockout simulations suggest a role for RIPK1 in modulating the lipopolysaccharide response. This work demonstrates the feasibility of genome-scale simulations of intracellular signaling.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-022-30684-Yen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleArtificial neural networks enable genome-scale simulations of intracellular signalingen_US
dc.typeArticleen_US
dc.identifier.citationNilsson, Avlant, Peters, Joshua M, Meimetis, Nikolaos, Bryson, Bryan and Lauffenburger, Douglas A. 2022. "Artificial neural networks enable genome-scale simulations of intracellular signaling." Nature Communications, 13 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-01-30T15:08:51Z
dspace.orderedauthorsNilsson, A; Peters, JM; Meimetis, N; Bryson, B; Lauffenburger, DAen_US
dspace.date.submission2023-01-30T15:08:54Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record