MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-animal pose estimation, identification and tracking with DeepLabCut

Author(s)
Lauer, Jessy; Zhou, Mu; Ye, Shaokai; Menegas, William; Schneider, Steffen; Nath, Tanmay; Rahman, Mohammed Mostafizur; Di Santo, Valentina; Soberanes, Daniel; Feng, Guoping; Murthy, Venkatesh N; Lauder, George; Dulac, Catherine; Mathis, Mackenzie Weygandt; Mathis, Alexander; ... Show more Show less
Thumbnail
DownloadPublished version (11.60Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Estimating the pose of multiple animals is a challenging computer vision problem: frequent interactions cause occlusions and complicate the association of detected keypoints to the correct individuals, as well as having highly similar looking animals that interact more closely than in typical multi-human scenarios. To take up this challenge, we build on DeepLabCut, an open-source pose estimation toolbox, and provide high-performance animal assembly and tracking—features required for multi-animal scenarios. Furthermore, we integrate the ability to predict an animal’s identity to assist tracking (in case of occlusions). We illustrate the power of this framework with four datasets varying in complexity, which we release to serve as a benchmark for future algorithm development.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/148780
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Nature Methods
Publisher
Springer Science and Business Media LLC
Citation
Lauer, Jessy, Zhou, Mu, Ye, Shaokai, Menegas, William, Schneider, Steffen et al. 2022. "Multi-animal pose estimation, identification and tracking with DeepLabCut." Nature Methods, 19 (4).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.