Show simple item record

dc.contributor.authorLauer, Jessy
dc.contributor.authorZhou, Mu
dc.contributor.authorYe, Shaokai
dc.contributor.authorMenegas, William
dc.contributor.authorSchneider, Steffen
dc.contributor.authorNath, Tanmay
dc.contributor.authorRahman, Mohammed Mostafizur
dc.contributor.authorDi Santo, Valentina
dc.contributor.authorSoberanes, Daniel
dc.contributor.authorFeng, Guoping
dc.contributor.authorMurthy, Venkatesh N
dc.contributor.authorLauder, George
dc.contributor.authorDulac, Catherine
dc.contributor.authorMathis, Mackenzie Weygandt
dc.contributor.authorMathis, Alexander
dc.date.accessioned2023-03-27T14:26:22Z
dc.date.available2023-03-27T14:26:22Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/148780
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Estimating the pose of multiple animals is a challenging computer vision problem: frequent interactions cause occlusions and complicate the association of detected keypoints to the correct individuals, as well as having highly similar looking animals that interact more closely than in typical multi-human scenarios. To take up this challenge, we build on DeepLabCut, an open-source pose estimation toolbox, and provide high-performance animal assembly and tracking—features required for multi-animal scenarios. Furthermore, we integrate the ability to predict an animal’s identity to assist tracking (in case of occlusions). We illustrate the power of this framework with four datasets varying in complexity, which we release to serve as a benchmark for future algorithm development.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41592-022-01443-0en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleMulti-animal pose estimation, identification and tracking with DeepLabCuten_US
dc.typeArticleen_US
dc.identifier.citationLauer, Jessy, Zhou, Mu, Ye, Shaokai, Menegas, William, Schneider, Steffen et al. 2022. "Multi-animal pose estimation, identification and tracking with DeepLabCut." Nature Methods, 19 (4).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.relation.journalNature Methodsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-03-27T14:17:44Z
dspace.orderedauthorsLauer, J; Zhou, M; Ye, S; Menegas, W; Schneider, S; Nath, T; Rahman, MM; Di Santo, V; Soberanes, D; Feng, G; Murthy, VN; Lauder, G; Dulac, C; Mathis, MW; Mathis, Aen_US
dspace.date.submission2023-03-27T14:17:55Z
mit.journal.volume19en_US
mit.journal.issue4en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record