MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network

Author(s)
Kang, Iksung; de Cea, Marc; Xue, Jin; Li, Zheng; Barbastathis, George; Ram, Rajeev J; ... Show more Show less
Thumbnail
DownloadPublished version (23.53Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
<jats:p>Lensless holography promises compact, low-cost optical apparatus designs with similar performance to traditional imaging setups. Here, we propose the use of a silicon micro-LED fabricated in a commercial CMOS microelectronics process as the illumination source in a lensless holographic microscope. Its small emission area (<jats:inline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>&lt;<!-- < --></mml:mo> </mml:mrow> <mml:mn>4</mml:mn> <mml:mspace width="thinmathspace" /> <mml:mtext>µ<!-- µ --></mml:mtext> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> </jats:inline-formula>) ensures high spatial coherence without the need for a pinhole and results in a large NA setup, circumventing the limits to the source-to-sample distance encountered by conventional lensless holography apparatus. The scene is reconstructed using an untrained deep neural network architecture that simultaneously performs spectral recovery by learning from the given single experimental diffraction intensity. We envision this synergetic combination of CMOS micro-LEDs and the machine learning framework can be used in other computational imaging applications, such as a compact microscope for live-cell tracking or spectroscopic imaging of biological materials.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/150779
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Optica
Publisher
Optica Publishing Group
Citation
Kang, Iksung, de Cea, Marc, Xue, Jin, Li, Zheng, Barbastathis, George et al. 2022. "Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network." Optica, 9 (10).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.