Show simple item record

dc.contributor.authorKang, Iksung
dc.contributor.authorde Cea, Marc
dc.contributor.authorXue, Jin
dc.contributor.authorLi, Zheng
dc.contributor.authorBarbastathis, George
dc.contributor.authorRam, Rajeev J
dc.date.accessioned2023-05-19T13:48:24Z
dc.date.available2023-05-19T13:48:24Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/150779
dc.description.abstract<jats:p>Lensless holography promises compact, low-cost optical apparatus designs with similar performance to traditional imaging setups. Here, we propose the use of a silicon micro-LED fabricated in a commercial CMOS microelectronics process as the illumination source in a lensless holographic microscope. Its small emission area (<jats:inline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>&lt;<!-- < --></mml:mo> </mml:mrow> <mml:mn>4</mml:mn> <mml:mspace width="thinmathspace" /> <mml:mtext>µ<!-- µ --></mml:mtext> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> </jats:inline-formula>) ensures high spatial coherence without the need for a pinhole and results in a large NA setup, circumventing the limits to the source-to-sample distance encountered by conventional lensless holography apparatus. The scene is reconstructed using an untrained deep neural network architecture that simultaneously performs spectral recovery by learning from the given single experimental diffraction intensity. We envision this synergetic combination of CMOS micro-LEDs and the machine learning framework can be used in other computational imaging applications, such as a compact microscope for live-cell tracking or spectroscopic imaging of biological materials.</jats:p>en_US
dc.language.isoen
dc.publisherOptica Publishing Groupen_US
dc.relation.isversionof10.1364/OPTICA.470712en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceOpticaen_US
dc.titleSimultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural networken_US
dc.typeArticleen_US
dc.identifier.citationKang, Iksung, de Cea, Marc, Xue, Jin, Li, Zheng, Barbastathis, George et al. 2022. "Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network." Optica, 9 (10).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalOpticaen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-05-19T13:45:48Z
dspace.orderedauthorsKang, I; de Cea, M; Xue, J; Li, Z; Barbastathis, G; Ram, RJen_US
dspace.date.submission2023-05-19T13:45:53Z
mit.journal.volume9en_US
mit.journal.issue10en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record