MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the molecular picture and interfacial temperature discontinuity during evaporation and condensation

Author(s)
Chen, Gang
Thumbnail
DownloadAccepted version (1.008Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-NoDerivatives https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Although it has been shown experimentally that a temperature discontinuity exists at the liquid-vapor interface during evaporation and condensation, quantitatively modeling this temperature jump has been difficult. The classical Schrage equation does not give enough information to determine the interfacial temperature jump. Starting from the Boltzmann transport equation, this paper establishes three interfacial boundary conditions to connect the temperature, density, and pressure jumps at the liquid-vapor interface to the interfacial mass and heat fluxes: one for the mass flux (the Schrage equation), one for the heat flux, and the third for the density discontinuities. These expressions can be readily coupled to heat and mass transport equations in the continuum of the liquid and the vapor phases, enabling one to determine the values of the interfacial temperature, density, and pressure jumps. Comparison with past experiments is favorable. A thermomolecular emission model, mimicking thermionic emission of electrons, is also presented to gain more molecular-level insights on the thermal evaporation processes.
Date issued
2022
URI
https://hdl.handle.net/1721.1/150831
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
International Journal of Heat and Mass Transfer
Publisher
Elsevier BV
Citation
Chen, Gang. 2022. "On the molecular picture and interfacial temperature discontinuity during evaporation and condensation." International Journal of Heat and Mass Transfer, 191.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.