MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spherical Two-Distance Sets and Eigenvalues of Signed Graphs

Author(s)
Jiang, Zilin; Tidor, Jonathan; Yao, Yuan; Zhang, Shengtong; Zhao, Yufei
Thumbnail
Download493_2023_Article_2.pdf (724.5Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We study the problem of determining the maximum size of a spherical two-distance set with two fixed angles (one acute and one obtuse) in high dimensions. Let $$N_{\alpha ,\beta }(d)$$ N α , β ( d ) denote the maximum number of unit vectors in $${\mathbb {R}}^d$$ R d where all pairwise inner products lie in $$\{\alpha ,\beta \}$$ { α , β } . For fixed $$-1\le \beta<0\le \alpha <1$$ - 1 ≤ β < 0 ≤ α < 1 , we propose a conjecture for the limit of $$N_{\alpha ,\beta }(d)/d$$ N α , β ( d ) / d as $$d \rightarrow \infty $$ d → ∞ in terms of eigenvalue multiplicities of signed graphs. We determine this limit when $$\alpha +2\beta <0$$ α + 2 β < 0 or $$(1-\alpha )/(\alpha -\beta ) \in \{1, \sqrt{2}, \sqrt{3}\}$$ ( 1 - α ) / ( α - β ) ∈ { 1 , 2 , 3 } . Our work builds on our recent resolution of the problem in the case of $$\alpha = -\beta $$ α = - β (corresponding to equiangular lines). It is the first determination of $$\lim _{d \rightarrow \infty } N_{\alpha ,\beta }(d)/d$$ lim d → ∞ N α , β ( d ) / d for any nontrivial fixed values of $$\alpha $$ α and $$\beta $$ β outside of the equiangular lines setting.
Date issued
2023-07-21
URI
https://hdl.handle.net/1721.1/151162
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg
Citation
Jiang, Zilin, Tidor, Jonathan, Yao, Yuan, Zhang, Shengtong and Zhao, Yufei. 2023. "Spherical Two-Distance Sets and Eigenvalues of Signed Graphs."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.