dc.contributor.author | Jiang, Zilin | |
dc.contributor.author | Tidor, Jonathan | |
dc.contributor.author | Yao, Yuan | |
dc.contributor.author | Zhang, Shengtong | |
dc.contributor.author | Zhao, Yufei | |
dc.date.accessioned | 2023-07-25T18:46:06Z | |
dc.date.available | 2023-07-25T18:46:06Z | |
dc.date.issued | 2023-07-21 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/151162 | |
dc.description.abstract | Abstract
We study the problem of determining the maximum size of a spherical two-distance set with two fixed angles (one acute and one obtuse) in high dimensions. Let
$$N_{\alpha ,\beta }(d)$$
N
α
,
β
(
d
)
denote the maximum number of unit vectors in
$${\mathbb {R}}^d$$
R
d
where all pairwise inner products lie in
$$\{\alpha ,\beta \}$$
{
α
,
β
}
. For fixed
$$-1\le \beta<0\le \alpha <1$$
-
1
≤
β
<
0
≤
α
<
1
, we propose a conjecture for the limit of
$$N_{\alpha ,\beta }(d)/d$$
N
α
,
β
(
d
)
/
d
as
$$d \rightarrow \infty $$
d
→
∞
in terms of eigenvalue multiplicities of signed graphs. We determine this limit when
$$\alpha +2\beta <0$$
α
+
2
β
<
0
or
$$(1-\alpha )/(\alpha -\beta ) \in \{1, \sqrt{2}, \sqrt{3}\}$$
(
1
-
α
)
/
(
α
-
β
)
∈
{
1
,
2
,
3
}
.
Our work builds on our recent resolution of the problem in the case of
$$\alpha = -\beta $$
α
=
-
β
(corresponding to equiangular lines). It is the first determination of
$$\lim _{d \rightarrow \infty } N_{\alpha ,\beta }(d)/d$$
lim
d
→
∞
N
α
,
β
(
d
)
/
d
for any nontrivial fixed values of
$$\alpha $$
α
and
$$\beta $$
β
outside of the equiangular lines setting. | en_US |
dc.publisher | Springer Berlin Heidelberg | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s00493-023-00002-1 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | Spherical Two-Distance Sets and Eigenvalues of Signed Graphs | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Jiang, Zilin, Tidor, Jonathan, Yao, Yuan, Zhang, Shengtong and Zhao, Yufei. 2023. "Spherical Two-Distance Sets and Eigenvalues of Signed Graphs." | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.identifier.mitlicense | PUBLISHER_CC | |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2023-07-23T03:10:50Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s) | |
dspace.embargo.terms | N | |
dspace.date.submission | 2023-07-23T03:10:50Z | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |