Show simple item record

dc.contributor.authorJiang, Zilin
dc.contributor.authorTidor, Jonathan
dc.contributor.authorYao, Yuan
dc.contributor.authorZhang, Shengtong
dc.contributor.authorZhao, Yufei
dc.date.accessioned2023-07-25T18:46:06Z
dc.date.available2023-07-25T18:46:06Z
dc.date.issued2023-07-21
dc.identifier.urihttps://hdl.handle.net/1721.1/151162
dc.description.abstractAbstract We study the problem of determining the maximum size of a spherical two-distance set with two fixed angles (one acute and one obtuse) in high dimensions. Let $$N_{\alpha ,\beta }(d)$$ N α , β ( d ) denote the maximum number of unit vectors in $${\mathbb {R}}^d$$ R d where all pairwise inner products lie in $$\{\alpha ,\beta \}$$ { α , β } . For fixed $$-1\le \beta<0\le \alpha <1$$ - 1 ≤ β < 0 ≤ α < 1 , we propose a conjecture for the limit of $$N_{\alpha ,\beta }(d)/d$$ N α , β ( d ) / d as $$d \rightarrow \infty $$ d → ∞ in terms of eigenvalue multiplicities of signed graphs. We determine this limit when $$\alpha +2\beta <0$$ α + 2 β < 0 or $$(1-\alpha )/(\alpha -\beta ) \in \{1, \sqrt{2}, \sqrt{3}\}$$ ( 1 - α ) / ( α - β ) ∈ { 1 , 2 , 3 } . Our work builds on our recent resolution of the problem in the case of $$\alpha = -\beta $$ α = - β (corresponding to equiangular lines). It is the first determination of $$\lim _{d \rightarrow \infty } N_{\alpha ,\beta }(d)/d$$ lim d → ∞ N α , β ( d ) / d for any nontrivial fixed values of $$\alpha $$ α and $$\beta $$ β outside of the equiangular lines setting.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00493-023-00002-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleSpherical Two-Distance Sets and Eigenvalues of Signed Graphsen_US
dc.typeArticleen_US
dc.identifier.citationJiang, Zilin, Tidor, Jonathan, Yao, Yuan, Zhang, Shengtong and Zhao, Yufei. 2023. "Spherical Two-Distance Sets and Eigenvalues of Signed Graphs."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-07-23T03:10:50Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-07-23T03:10:50Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record