MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cascade Defluorination of Perfluoroalkylated Catholytes Unlocks High Lithium Primary Battery Capacities

Author(s)
Gao, Haining; Yoshinaga, Kosuke; Steinberg, Katherine; Swager, Timothy M; Gallant, Betar M
Thumbnail
DownloadPublished version (2.032Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-NoDerivatives https://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Exceeding the energy density of lithium−carbon monofluoride (Li−CF<jats:sub>x</jats:sub>), today's leading Li primary battery, requires an increase in fluorine content (<jats:italic>x</jats:italic>) that determines the theoretical capacity available from C−F bond reduction. However, high F‐content carbon materials face challenges such as poor electronic conductivity, low reduction potentials (&lt;1.3 V versus Li/Li<jats:sup>+</jats:sup>), and/or low C−F bond utilization. This study investigates molecular structural design principles for a new class of high F‐content fluoroalkyl‐aromatic catholytes that address these challenges. A polarizable conjugated system—an aromatic ring with an alkene linker—functions as electron acceptor and redox initiator, enabling a cascade defluorination of an adjacent perfluoroalkyl chain (<jats:italic>R</jats:italic><jats:sub>F</jats:sub> = −C<jats:sub>n</jats:sub>F<jats:sub>2n+1</jats:sub>). The synthesized molecules successfully overcome premature deactivation observed in previously studied catholytes and achieve close‐to‐full defluorination (up to 15/17 available F), yielding high gravimetric capacities of 748 mAh g<jats:sup>−1</jats:sup><jats:sub>fluoroalkyl‐aromatic</jats:sub> and energies of 1785 Wh kg<jats:sup>−1</jats:sup><jats:sub>fluoroalkyl‐aromatic</jats:sub>. The voltage compatibility between fluoroalkyl‐aromatics and CF<jats:sub>x</jats:sub> enables design of hybrid cells containing C−F redox activity in both solid and liquid phases, with a projected enhancement of Li–CF<jats:sub>x</jats:sub> gravimetric energy by 35% based on weight of electrodes+electrolyte. With further improvement of cathode architecture, these “liquid CF<jats:sub>x</jats:sub>” analogues are strong candidates for exceeding the energy limitations of today's primary chemistries.</jats:p>
Date issued
2023-08
URI
https://hdl.handle.net/1721.1/152314
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Advanced Energy Materials
Publisher
Wiley
Citation
Gao, Haining, Yoshinaga, Kosuke, Steinberg, Katherine, Swager, Timothy M and Gallant, Betar M. 2023. "Cascade Defluorination of Perfluoroalkylated Catholytes Unlocks High Lithium Primary Battery Capacities." Advanced Energy Materials, 13 (32).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.