| dc.contributor.author | Gao, Haining |  | 
| dc.contributor.author | Yoshinaga, Kosuke |  | 
| dc.contributor.author | Steinberg, Katherine |  | 
| dc.contributor.author | Swager, Timothy M |  | 
| dc.contributor.author | Gallant, Betar M |  | 
| dc.date.accessioned | 2023-10-02T14:37:15Z |  | 
| dc.date.available | 2023-10-02T14:37:15Z |  | 
| dc.date.issued | 2023-08 |  | 
| dc.identifier.uri | https://hdl.handle.net/1721.1/152314 |  | 
| dc.description.abstract | <jats:title>Abstract</jats:title><jats:p>Exceeding the energy density of lithium−carbon monofluoride (Li−CF<jats:sub>x</jats:sub>), today's leading Li primary battery, requires an increase in fluorine content (<jats:italic>x</jats:italic>) that determines the theoretical capacity available from C−F bond reduction. However, high F‐content carbon materials face challenges such as poor electronic conductivity, low reduction potentials (<1.3 V versus Li/Li<jats:sup>+</jats:sup>), and/or low C−F bond utilization. This study investigates molecular structural design principles for a new class of high F‐content fluoroalkyl‐aromatic catholytes that address these challenges. A polarizable conjugated system—an aromatic ring with an alkene linker—functions as electron acceptor and redox initiator, enabling a cascade defluorination of an adjacent perfluoroalkyl chain (<jats:italic>R</jats:italic><jats:sub>F</jats:sub> = −C<jats:sub>n</jats:sub>F<jats:sub>2n+1</jats:sub>). The synthesized molecules successfully overcome premature deactivation observed in previously studied catholytes and achieve close‐to‐full defluorination (up to 15/17 available F), yielding high gravimetric capacities of 748 mAh g<jats:sup>−1</jats:sup><jats:sub>fluoroalkyl‐aromatic</jats:sub> and energies of 1785 Wh kg<jats:sup>−1</jats:sup><jats:sub>fluoroalkyl‐aromatic</jats:sub>. The voltage compatibility between fluoroalkyl‐aromatics and CF<jats:sub>x</jats:sub> enables design of hybrid cells containing C−F redox activity in both solid and liquid phases, with a projected enhancement of Li–CF<jats:sub>x</jats:sub> gravimetric energy by 35% based on weight of electrodes+electrolyte. With further improvement of cathode architecture, these “liquid CF<jats:sub>x</jats:sub>” analogues are strong candidates for exceeding the energy limitations of today's primary chemistries.</jats:p> | en_US | 
| dc.language.iso | en |  | 
| dc.publisher | Wiley | en_US | 
| dc.relation.isversionof | 10.1002/aenm.202301751 | en_US | 
| dc.rights | Creative Commons Attribution-Noncommercial-NoDerivatives | en_US | 
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US | 
| dc.source | Wiley | en_US | 
| dc.title | Cascade Defluorination of Perfluoroalkylated Catholytes Unlocks High Lithium Primary Battery Capacities | en_US | 
| dc.type | Article | en_US | 
| dc.identifier.citation | Gao, Haining, Yoshinaga, Kosuke, Steinberg, Katherine, Swager, Timothy M and Gallant, Betar M. 2023. "Cascade Defluorination of Perfluoroalkylated Catholytes Unlocks High Lithium Primary Battery Capacities." Advanced Energy Materials, 13 (32). |  | 
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering |  | 
| dc.contributor.department | Massachusetts Institute of Technology. Department of Chemistry |  | 
| dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering |  | 
| dc.relation.journal | Advanced Energy Materials | en_US | 
| dc.eprint.version | Final published version | en_US | 
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US | 
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US | 
| dc.date.updated | 2023-10-02T13:48:30Z |  | 
| dspace.orderedauthors | Gao, H; Yoshinaga, K; Steinberg, K; Swager, TM; Gallant, BM | en_US | 
| dspace.date.submission | 2023-10-02T13:48:32Z |  | 
| mit.journal.volume | 13 | en_US | 
| mit.journal.issue | 32 | en_US | 
| mit.license | PUBLISHER_CC |  | 
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |