Show simple item record

dc.contributor.authorGao, Haining
dc.contributor.authorYoshinaga, Kosuke
dc.contributor.authorSteinberg, Katherine
dc.contributor.authorSwager, Timothy M
dc.contributor.authorGallant, Betar M
dc.date.accessioned2023-10-02T14:37:15Z
dc.date.available2023-10-02T14:37:15Z
dc.date.issued2023-08
dc.identifier.urihttps://hdl.handle.net/1721.1/152314
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Exceeding the energy density of lithium−carbon monofluoride (Li−CF<jats:sub>x</jats:sub>), today's leading Li primary battery, requires an increase in fluorine content (<jats:italic>x</jats:italic>) that determines the theoretical capacity available from C−F bond reduction. However, high F‐content carbon materials face challenges such as poor electronic conductivity, low reduction potentials (&lt;1.3 V versus Li/Li<jats:sup>+</jats:sup>), and/or low C−F bond utilization. This study investigates molecular structural design principles for a new class of high F‐content fluoroalkyl‐aromatic catholytes that address these challenges. A polarizable conjugated system—an aromatic ring with an alkene linker—functions as electron acceptor and redox initiator, enabling a cascade defluorination of an adjacent perfluoroalkyl chain (<jats:italic>R</jats:italic><jats:sub>F</jats:sub> = −C<jats:sub>n</jats:sub>F<jats:sub>2n+1</jats:sub>). The synthesized molecules successfully overcome premature deactivation observed in previously studied catholytes and achieve close‐to‐full defluorination (up to 15/17 available F), yielding high gravimetric capacities of 748 mAh g<jats:sup>−1</jats:sup><jats:sub>fluoroalkyl‐aromatic</jats:sub> and energies of 1785 Wh kg<jats:sup>−1</jats:sup><jats:sub>fluoroalkyl‐aromatic</jats:sub>. The voltage compatibility between fluoroalkyl‐aromatics and CF<jats:sub>x</jats:sub> enables design of hybrid cells containing C−F redox activity in both solid and liquid phases, with a projected enhancement of Li–CF<jats:sub>x</jats:sub> gravimetric energy by 35% based on weight of electrodes+electrolyte. With further improvement of cathode architecture, these “liquid CF<jats:sub>x</jats:sub>” analogues are strong candidates for exceeding the energy limitations of today's primary chemistries.</jats:p>en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionof10.1002/aenm.202301751en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceWileyen_US
dc.titleCascade Defluorination of Perfluoroalkylated Catholytes Unlocks High Lithium Primary Battery Capacitiesen_US
dc.typeArticleen_US
dc.identifier.citationGao, Haining, Yoshinaga, Kosuke, Steinberg, Katherine, Swager, Timothy M and Gallant, Betar M. 2023. "Cascade Defluorination of Perfluoroalkylated Catholytes Unlocks High Lithium Primary Battery Capacities." Advanced Energy Materials, 13 (32).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.relation.journalAdvanced Energy Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-10-02T13:48:30Z
dspace.orderedauthorsGao, H; Yoshinaga, K; Steinberg, K; Swager, TM; Gallant, BMen_US
dspace.date.submission2023-10-02T13:48:32Z
mit.journal.volume13en_US
mit.journal.issue32en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record