MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Allotaxonometry and rank-turbulence divergence: a universal instrument for comparing complex systems

Author(s)
Dodds, Peter S.; Minot, Joshua R.; Arnold, Michael V.; Alshaabi, Thayer; Adams, Jane L.; Dewhurst, David R.; Gray, Tyler J.; Frank, Morgan R.; Reagan, Andrew J.; Danforth, Christopher M.; ... Show more Show less
Thumbnail
Download13688_2023_Article_400.pdf (5.445Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Complex systems often comprise many kinds of components which vary over many orders of magnitude in size: Populations of cities in countries, individual and corporate wealth in economies, species abundance in ecologies, word frequency in natural language, and node degree in complex networks. Here, we introduce ‘allotaxonometry’ along with ‘rank-turbulence divergence’ (RTD), a tunable instrument for comparing any two ranked lists of components. We analytically develop our rank-based divergence in a series of steps, and then establish a rank-based allotaxonograph which pairs a map-like histogram for rank-rank pairs with an ordered list of components according to divergence contribution. We explore the performance of rank-turbulence divergence, which we view as an instrument of ‘type calculus’, for a series of distinct settings including: Language use on Twitter and in books, species abundance, baby name popularity, market capitalization, performance in sports, mortality causes, and job titles. We provide a series of supplementary flipbooks which demonstrate the tunability and storytelling power of rank-based allotaxonometry.
Date issued
2023-09-19
URI
https://hdl.handle.net/1721.1/152386
Department
Massachusetts Institute of Technology. Institute for Data, Systems, and Society
Publisher
Springer Berlin Heidelberg
Citation
EPJ Data Science. 2023 Sep 19;12(1):37
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.