Show simple item record

dc.contributor.authorDodds, Peter S.
dc.contributor.authorMinot, Joshua R.
dc.contributor.authorArnold, Michael V.
dc.contributor.authorAlshaabi, Thayer
dc.contributor.authorAdams, Jane L.
dc.contributor.authorDewhurst, David R.
dc.contributor.authorGray, Tyler J.
dc.contributor.authorFrank, Morgan R.
dc.contributor.authorReagan, Andrew J.
dc.contributor.authorDanforth, Christopher M.
dc.date.accessioned2023-10-06T15:48:02Z
dc.date.available2023-10-06T15:48:02Z
dc.date.issued2023-09-19
dc.identifier.urihttps://hdl.handle.net/1721.1/152386
dc.description.abstractAbstract Complex systems often comprise many kinds of components which vary over many orders of magnitude in size: Populations of cities in countries, individual and corporate wealth in economies, species abundance in ecologies, word frequency in natural language, and node degree in complex networks. Here, we introduce ‘allotaxonometry’ along with ‘rank-turbulence divergence’ (RTD), a tunable instrument for comparing any two ranked lists of components. We analytically develop our rank-based divergence in a series of steps, and then establish a rank-based allotaxonograph which pairs a map-like histogram for rank-rank pairs with an ordered list of components according to divergence contribution. We explore the performance of rank-turbulence divergence, which we view as an instrument of ‘type calculus’, for a series of distinct settings including: Language use on Twitter and in books, species abundance, baby name popularity, market capitalization, performance in sports, mortality causes, and job titles. We provide a series of supplementary flipbooks which demonstrate the tunability and storytelling power of rank-based allotaxonometry.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjds/s13688-023-00400-xen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleAllotaxonometry and rank-turbulence divergence: a universal instrument for comparing complex systemsen_US
dc.typeArticleen_US
dc.identifier.citationEPJ Data Science. 2023 Sep 19;12(1):37en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-09-24T03:14:33Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH, DE
dspace.embargo.termsN
dspace.date.submission2023-09-24T03:14:32Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record