MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mindfulness-based real-time fMRI neurofeedback: a randomized controlled trial to optimize dosing for depressed adolescents

Author(s)
Bloom, Paul A.; Pagliaccio, David; Zhang, Jiahe; Bauer, Clemens C. C.; Kyler, Mia; Greene, Keara D.; Treves, Isaac; Morfini, Francesca; Durham, Katherine; Cherner, Rachel; Bajwa, Zia; Wool, Emma; Olafsson, Valur; Lee, Ray F.; ... Show more Show less
Thumbnail
Download12888_2023_Article_5223.pdf (1.712Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Background Adolescence is characterized by a heightened vulnerability for Major Depressive Disorder (MDD) onset, and currently, treatments are only effective for roughly half of adolescents with MDD. Accordingly, novel interventions are urgently needed. This study aims to establish mindfulness-based real-time fMRI neurofeedback (mbNF) as a non-invasive approach to downregulate the default mode network (DMN) in order to decrease ruminatory processes and depressive symptoms. Methods Adolescents (N = 90) with a current diagnosis of MDD ages 13–18-years-old will be randomized in a parallel group, two-arm, superiority trial to receive either 15 or 30 min of mbNF with a 1:1 allocation ratio. Real-time neurofeedback based on activation of the frontoparietal network (FPN) relative to the DMN will be displayed to participants via the movement of a ball on a computer screen while participants practice mindfulness in the scanner. We hypothesize that within-DMN (medial prefrontal cortex [mPFC] with posterior cingulate cortex [PCC]) functional connectivity will be reduced following mbNF (Aim 1: Target Engagement). Additionally, we hypothesize that participants in the 30-min mbNF condition will show greater reductions in within-DMN functional connectivity (Aim 2: Dosing Impact on Target Engagement). Aim 1 will analyze data from all participants as a single-group, and Aim 2 will leverage the randomized assignment to analyze data as a parallel-group trial. Secondary analyses will probe changes in depressive symptoms and rumination. Discussion Results of this study will determine whether mbNF reduces functional connectivity within the DMN among adolescents with MDD, and critically, will identify the optimal dosing with respect to DMN modulation as well as reduction in depressive symptoms and rumination. Trial Registration This study has been registered with clinicaltrials.gov, most recently updated on July 6, 2023 (trial identifier: NCT05617495).
Date issued
2023-10-17
URI
https://hdl.handle.net/1721.1/152519
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
BioMed Central
Citation
BMC Psychiatry. 2023 Oct 17;23(1):757
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.