MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bubble decomposition for the harmonic map heat flow in the equivariant case

Author(s)
Jendrej, Jacek; Lawrie, Andrew
Thumbnail
Download526_2023_Article_2597.pdf (608.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We consider the harmonic map heat flow for maps $$\mathbb {R}^{2} \rightarrow \mathbb {S}^2$$ R 2 → S 2 , under equivariant symmetry. It is known that solutions to the initial value problem can exhibit bubbling along a sequence of times—the solution decouples into a superposition of harmonic maps concentrating at different scales and a body map that accounts for the rest of the energy. We prove that this bubble decomposition is unique and occurs continuously in time. The main new ingredient in the proof is the notion of a collision interval from Jendrej and Lawrie (J Amer Math Soc).
Date issued
2023-11-02
URI
https://hdl.handle.net/1721.1/152907
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg
Citation
Calculus of Variations and Partial Differential Equations. 2023 Nov 02;62(9):264
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.