Show simple item record

dc.contributor.authorJendrej, Jacek
dc.contributor.authorLawrie, Andrew
dc.date.accessioned2023-11-06T16:25:13Z
dc.date.available2023-11-06T16:25:13Z
dc.date.issued2023-11-02
dc.identifier.urihttps://hdl.handle.net/1721.1/152907
dc.description.abstractAbstract We consider the harmonic map heat flow for maps $$\mathbb {R}^{2} \rightarrow \mathbb {S}^2$$ R 2 → S 2 , under equivariant symmetry. It is known that solutions to the initial value problem can exhibit bubbling along a sequence of times—the solution decouples into a superposition of harmonic maps concentrating at different scales and a body map that accounts for the rest of the energy. We prove that this bubble decomposition is unique and occurs continuously in time. The main new ingredient in the proof is the notion of a collision interval from Jendrej and Lawrie (J Amer Math Soc).en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00526-023-02597-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleBubble decomposition for the harmonic map heat flow in the equivariant caseen_US
dc.typeArticleen_US
dc.identifier.citationCalculus of Variations and Partial Differential Equations. 2023 Nov 02;62(9):264en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-11-05T04:12:04Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-11-05T04:12:04Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record