MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Dimension of Divisibility Orders and Multiset Posets

Author(s)
Haiman, Milan
Thumbnail
Download11083_2023_Article_9653.pdf (415.2Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract The Dushnik–Miller dimension of a poset P is the least d for which P can be embedded into a product of d chains. Lewis and Souza isibility order on the interval of integers $$[N/\kappa , N]$$ [ N / κ , N ] is bounded above by $$\kappa (\log \kappa )^{1+o(1)}$$ κ ( log κ ) 1 + o ( 1 ) and below by $$\Omega ((\log \kappa /\log \log \kappa )^2)$$ Ω ( ( log κ / log log κ ) 2 ) . We improve the upper bound to $$O((\log \kappa )^3/(\log \log \kappa )^2).$$ O ( ( log κ ) 3 / ( log log κ ) 2 ) . We deduce this bound from a more general result on posets of multisets ordered by inclusion. We also consider other divisibility orders and give a bound for polynomials ordered by divisibility.
Date issued
2023-11-22
URI
https://hdl.handle.net/1721.1/153057
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Netherlands
Citation
Haiman, Milan. 2023. "The Dimension of Divisibility Orders and Multiset Posets."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.