Show simple item record

dc.contributor.authorHaiman, Milan
dc.date.accessioned2023-11-27T20:31:02Z
dc.date.available2023-11-27T20:31:02Z
dc.date.issued2023-11-22
dc.identifier.urihttps://hdl.handle.net/1721.1/153057
dc.description.abstractAbstract The Dushnik–Miller dimension of a poset P is the least d for which P can be embedded into a product of d chains. Lewis and Souza isibility order on the interval of integers $$[N/\kappa , N]$$ [ N / κ , N ] is bounded above by $$\kappa (\log \kappa )^{1+o(1)}$$ κ ( log κ ) 1 + o ( 1 ) and below by $$\Omega ((\log \kappa /\log \log \kappa )^2)$$ Ω ( ( log κ / log log κ ) 2 ) . We improve the upper bound to $$O((\log \kappa )^3/(\log \log \kappa )^2).$$ O ( ( log κ ) 3 / ( log log κ ) 2 ) . We deduce this bound from a more general result on posets of multisets ordered by inclusion. We also consider other divisibility orders and give a bound for polynomials ordered by divisibility.en_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttps://doi.org/10.1007/s11083-023-09653-7en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Netherlandsen_US
dc.titleThe Dimension of Divisibility Orders and Multiset Posetsen_US
dc.typeArticleen_US
dc.identifier.citationHaiman, Milan. 2023. "The Dimension of Divisibility Orders and Multiset Posets."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-11-26T04:10:55Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-11-26T04:10:55Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record