Show simple item record

dc.contributor.authorSussman, Ethan
dc.date.accessioned2024-01-09T17:36:03Z
dc.date.available2024-01-09T17:36:03Z
dc.date.issued2024-01-03
dc.identifier.urihttps://hdl.handle.net/1721.1/153286
dc.description.abstractWe discuss the meromorphic continuation of certain hypergeometric integrals modeled on the Selberg integral, including the 3-point and 4-point functions of BPZ’s minimal models of 2D CFT as described by Felder & Silvotti and Dotsenko & Fateev (the “Coulomb gas formalism”). This is accomplished via a geometric analysis of the singularities of the integrands. In the case that the integrand is symmetric (as in the Selberg integral itself) or, more generally, what we call “DF-symmetric,” we show that a number of apparent singularities are removable, as required for the construction of the minimal models via these methods.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00023-023-01402-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleThe Singularities of Selberg- and Dotsenko–Fateev-Like Integralsen_US
dc.typeArticleen_US
dc.identifier.citationSussman, E. The Singularities of Selberg- and Dotsenko–Fateev-Like Integrals. Ann. Henri Poincaré (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-01-07T04:11:43Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-01-07T04:11:43Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record