MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanomaterials Based Micro/Nanoelectromechanical System (MEMS and NEMS) Devices

Author(s)
Torkashvand, Ziba; Shayeganfar, Farzaneh; Ramazani, Ali
Thumbnail
Downloadmicromachines-15-00175.pdf (3.682Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The micro- and nanoelectromechanical system (MEMS and NEMS) devices based on two-dimensional (2D) materials reveal novel functionalities and higher sensitivity compared to their silicon-base counterparts. Unique properties of 2D materials boost the demand for 2D material-based nanoelectromechanical devices and sensing. During the last decades, using suspended 2D membranes integrated with MEMS and NEMS emerged high-performance sensitivities in mass and gas sensors, accelerometers, pressure sensors, and microphones. Actively sensing minute changes in the surrounding environment is provided by means of MEMS/NEMS sensors, such as sensing in passive modes of small changes in momentum, temperature, and strain. In this review, we discuss the materials preparation methods, electronic, optical, and mechanical properties of 2D materials used in NEMS and MEMS devices, fabrication routes besides device operation principles.
Date issued
2024-01-24
URI
https://hdl.handle.net/1721.1/153561
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Micromachines 15 (2): 175 (2024)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.