MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization Algorithms for Multi-species Spherical Spin Glasses

Author(s)
Huang, Brice; Sellke, Mark
Thumbnail
Download10955_2024_Article_3242.pdf (694.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This paper develops approximate message passing algorithms to optimize multi-species spherical spin glasses. We first show how to efficiently achieve the algorithmic threshold energy identified in our companion work (Huang and Sellke in arXiv preprint, 2023. <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://arxiv.org/abs/2303.12172">arXiv:2303.12172</jats:ext-link>), thus confirming that the Lipschitz hardness result proved therein is tight. Next we give two generalized algorithms which produce multiple outputs and show all of them are approximate critical points. Namely, in an <jats:italic>r</jats:italic>-species model we construct <jats:inline-formula><jats:alternatives><jats:tex-math>$$2^r$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>r</mml:mi> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula> approximate critical points when the external field is stronger than a “topological trivialization" phase boundary, and exponentially many such points in the complementary regime. We also compute the local behavior of the Hamiltonian around each. These extensions are relevant for another companion work (Huang and Sellke in arXiv preprint, 2023. <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://arxiv.org/abs/2308.09677">arXiv:2308.09677</jats:ext-link>) on topological trivialization of the landscape.
Date issued
2024-02-24
URI
https://hdl.handle.net/1721.1/153576
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Journal of Statistical Physics
Publisher
Springer Science and Business Media LLC
Citation
Huang, B., Sellke, M. Optimization Algorithms for Multi-species Spherical Spin Glasses. J Stat Phys 191, 29 (2024).
Version: Final published version
ISSN
1572-9613
Keywords
Mathematical Physics, Statistical and Nonlinear Physics

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.