Show simple item record

dc.contributor.authorHuang, Brice
dc.contributor.authorSellke, Mark
dc.date.accessioned2024-02-26T18:52:31Z
dc.date.available2024-02-26T18:52:31Z
dc.date.issued2024-02-24
dc.identifier.issn1572-9613
dc.identifier.urihttps://hdl.handle.net/1721.1/153576
dc.description.abstractThis paper develops approximate message passing algorithms to optimize multi-species spherical spin glasses. We first show how to efficiently achieve the algorithmic threshold energy identified in our companion work (Huang and Sellke in arXiv preprint, 2023. <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://arxiv.org/abs/2303.12172">arXiv:2303.12172</jats:ext-link>), thus confirming that the Lipschitz hardness result proved therein is tight. Next we give two generalized algorithms which produce multiple outputs and show all of them are approximate critical points. Namely, in an <jats:italic>r</jats:italic>-species model we construct <jats:inline-formula><jats:alternatives><jats:tex-math>$$2^r$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mn>2</mml:mn> <mml:mi>r</mml:mi> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula> approximate critical points when the external field is stronger than a “topological trivialization" phase boundary, and exponentially many such points in the complementary regime. We also compute the local behavior of the Hamiltonian around each. These extensions are relevant for another companion work (Huang and Sellke in arXiv preprint, 2023. <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://arxiv.org/abs/2308.09677">arXiv:2308.09677</jats:ext-link>) on topological trivialization of the landscape.en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/s10955-024-03242-7en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.subjectMathematical Physicsen_US
dc.subjectStatistical and Nonlinear Physicsen_US
dc.titleOptimization Algorithms for Multi-species Spherical Spin Glassesen_US
dc.typeArticleen_US
dc.identifier.citationHuang, B., Sellke, M. Optimization Algorithms for Multi-species Spherical Spin Glasses. J Stat Phys 191, 29 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalJournal of Statistical Physicsen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-02-25T04:13:04Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-02-25T04:13:04Z
mit.journal.volume191en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record