Show simple item record

dc.contributor.authorShi, Chuqiao
dc.contributor.authorCao, Michael C.
dc.contributor.authorRehn, Sarah M.
dc.contributor.authorBae, Sang-Hoon
dc.contributor.authorKim, Jeehwan
dc.contributor.authorJones, Matthew R.
dc.contributor.authorMuller, David A.
dc.contributor.authorHan, Yimo
dc.date.accessioned2024-02-27T21:08:21Z
dc.date.available2024-02-27T21:08:21Z
dc.date.issued2022-05-18
dc.identifier.issn2057-3960
dc.identifier.urihttps://hdl.handle.net/1721.1/153596
dc.description.abstractUnderstanding lattice deformations is crucial in determining the properties of nanomaterials, which can become more prominent in future applications ranging from energy harvesting to electronic devices. However, it remains challenging to reveal unexpected deformations that crucially affect material properties across a large sample area. Here, we demonstrate a rapid and semi-automated unsupervised machine learning approach to uncover lattice deformations in materials. Our method utilizes divisive hierarchical clustering to automatically unveil multi-scale deformations in the entire sample flake from the diffraction data using four-dimensional scanning transmission electron microscopy (4D-STEM). Our approach overcomes the current barriers of large 4D data analysis without a priori knowledge of the sample. Using this purely data-driven analysis, we have uncovered different types of material deformations, such as strain, lattice distortion, bending contour, etc., which can significantly impact the band structure and subsequent performance of nanomaterials-based devices. We envision that this data-driven procedure will provide insight into materials’ intrinsic structures and accelerate the discovery of materials.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41524-022-00793-9en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Natureen_US
dc.subjectComputer Science Applicationsen_US
dc.subjectMechanics of Materialsen_US
dc.subjectGeneral Materials Scienceen_US
dc.subjectModeling and Simulationen_US
dc.titleUncovering material deformations via machine learning combined with four-dimensional scanning transmission electron microscopyen_US
dc.typeArticleen_US
dc.identifier.citationShi, C., Cao, M.C., Rehn, S.M. et al. Uncovering material deformations via machine learning combined with four-dimensional scanning transmission electron microscopy. npj Comput Mater 8, 114 (2022).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalnpj Computational Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-02-27T20:47:51Z
dspace.orderedauthorsShi, C; Cao, MC; Rehn, SM; Bae, S-H; Kim, J; Jones, MR; Muller, DA; Han, Yen_US
dspace.date.submission2024-02-27T20:47:56Z
mit.journal.volume8en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record