MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Incremental Non-Gaussian Inference for SLAM Using Normalizing Flows

Author(s)
Huang, Qiangqiang; Pu, Can; Khosoussi, Kasra; Rosen, David M.; Fourie, Dehann; How, Jonathan P.; Leonard, John J.; ... Show more Show less
Thumbnail
Download2110.00876.pdf (7.925Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-ShareAlike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper presents normalizing flows for incremental smoothing and mapping (NF-iSAM), a novel algorithm for inferring the full posterior distribution in SLAM problems with nonlinear measurement models and non-Gaussian factors. NF-iSAM exploits the expressive power of neural networks, and trains normalizing flows to model and sample the full posterior. By leveraging the Bayes tree, NF-iSAM enables efficient incremental updates similar to iSAM2, albeit in the more challenging non-Gaussian setting. We demonstrate the advantages of NF-iSAM over state-of-the-art point and distribution estimation algorithms using range-only SLAM problems with data association ambiguity. NF-iSAM presents superior accuracy in describing the posterior beliefs of continuous variables (e.g., position) and discrete variables (e.g., data association).
Date issued
2023-04
URI
https://hdl.handle.net/1721.1/153746
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
IEEE Transactions on Robotics
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Huang, Qiangqiang, Pu, Can, Khosoussi, Kasra, Rosen, David M., Fourie, Dehann et al. 2023. "Incremental Non-Gaussian Inference for SLAM Using Normalizing Flows." IEEE Transactions on Robotics, 39 (2).
Version: Author's final manuscript
ISSN
1552-3098
1941-0468
Keywords
Electrical and Electronic Engineering, Computer Science Applications, Control and Systems Engineering

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.