dc.contributor.author | Huang, Qiangqiang | |
dc.contributor.author | Pu, Can | |
dc.contributor.author | Khosoussi, Kasra | |
dc.contributor.author | Rosen, David M. | |
dc.contributor.author | Fourie, Dehann | |
dc.contributor.author | How, Jonathan P. | |
dc.contributor.author | Leonard, John J. | |
dc.date.accessioned | 2024-03-13T16:36:46Z | |
dc.date.available | 2024-03-13T16:36:46Z | |
dc.date.issued | 2023-04 | |
dc.identifier.issn | 1552-3098 | |
dc.identifier.issn | 1941-0468 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/153746 | |
dc.description.abstract | This paper presents normalizing flows for incremental smoothing and mapping (NF-iSAM), a novel algorithm for inferring the full posterior distribution in SLAM problems with nonlinear measurement models and non-Gaussian factors. NF-iSAM exploits the expressive power of neural networks, and trains normalizing flows to model and sample the full posterior. By leveraging the Bayes tree, NF-iSAM enables efficient incremental updates similar to iSAM2, albeit in the more challenging non-Gaussian setting. We demonstrate the advantages of NF-iSAM over state-of-the-art point and distribution estimation algorithms using range-only SLAM problems with data association ambiguity. NF-iSAM presents superior accuracy in describing the posterior beliefs of continuous variables (e.g., position) and discrete variables (e.g., data association). | en_US |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | 10.1109/tro.2022.3216498 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-ShareAlike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arxiv | en_US |
dc.subject | Electrical and Electronic Engineering | en_US |
dc.subject | Computer Science Applications | en_US |
dc.subject | Control and Systems Engineering | en_US |
dc.title | Incremental Non-Gaussian Inference for SLAM Using Normalizing Flows | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Huang, Qiangqiang, Pu, Can, Khosoussi, Kasra, Rosen, David M., Fourie, Dehann et al. 2023. "Incremental Non-Gaussian Inference for SLAM Using Normalizing Flows." IEEE Transactions on Robotics, 39 (2). | |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Nuclear Science and Engineering | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics | |
dc.relation.journal | IEEE Transactions on Robotics | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2024-03-13T16:28:01Z | |
dspace.orderedauthors | Huang, Q; Pu, C; Khosoussi, K; Rosen, DM; Fourie, D; How, JP; Leonard, JJ | en_US |
dspace.date.submission | 2024-03-13T16:28:04Z | |
mit.journal.volume | 39 | en_US |
mit.journal.issue | 2 | en_US |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |