Show simple item record

dc.contributor.authorHuang, Qiangqiang
dc.contributor.authorPu, Can
dc.contributor.authorKhosoussi, Kasra
dc.contributor.authorRosen, David M.
dc.contributor.authorFourie, Dehann
dc.contributor.authorHow, Jonathan P.
dc.contributor.authorLeonard, John J.
dc.date.accessioned2024-03-13T16:36:46Z
dc.date.available2024-03-13T16:36:46Z
dc.date.issued2023-04
dc.identifier.issn1552-3098
dc.identifier.issn1941-0468
dc.identifier.urihttps://hdl.handle.net/1721.1/153746
dc.description.abstractThis paper presents normalizing flows for incremental smoothing and mapping (NF-iSAM), a novel algorithm for inferring the full posterior distribution in SLAM problems with nonlinear measurement models and non-Gaussian factors. NF-iSAM exploits the expressive power of neural networks, and trains normalizing flows to model and sample the full posterior. By leveraging the Bayes tree, NF-iSAM enables efficient incremental updates similar to iSAM2, albeit in the more challenging non-Gaussian setting. We demonstrate the advantages of NF-iSAM over state-of-the-art point and distribution estimation algorithms using range-only SLAM problems with data association ambiguity. NF-iSAM presents superior accuracy in describing the posterior beliefs of continuous variables (e.g., position) and discrete variables (e.g., data association).en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/tro.2022.3216498en_US
dc.rightsCreative Commons Attribution-Noncommercial-ShareAlikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearxiven_US
dc.subjectElectrical and Electronic Engineeringen_US
dc.subjectComputer Science Applicationsen_US
dc.subjectControl and Systems Engineeringen_US
dc.titleIncremental Non-Gaussian Inference for SLAM Using Normalizing Flowsen_US
dc.typeArticleen_US
dc.identifier.citationHuang, Qiangqiang, Pu, Can, Khosoussi, Kasra, Rosen, David M., Fourie, Dehann et al. 2023. "Incremental Non-Gaussian Inference for SLAM Using Normalizing Flows." IEEE Transactions on Robotics, 39 (2).
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.relation.journalIEEE Transactions on Roboticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-03-13T16:28:01Z
dspace.orderedauthorsHuang, Q; Pu, C; Khosoussi, K; Rosen, DM; Fourie, D; How, JP; Leonard, JJen_US
dspace.date.submission2024-03-13T16:28:04Z
mit.journal.volume39en_US
mit.journal.issue2en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record