Show simple item record

dc.contributor.authorEeltink, D.
dc.contributor.authorBranger, H.
dc.contributor.authorLuneau, C.
dc.contributor.authorHe, Y.
dc.contributor.authorChabchoub, A.
dc.contributor.authorKasparian, J.
dc.contributor.authorvan den Bremer, T. S.
dc.contributor.authorSapsis, T. P.
dc.date.accessioned2024-04-18T21:04:28Z
dc.date.available2024-04-18T21:04:28Z
dc.date.issued2022-04-29
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/154221
dc.description.abstractWave breaking is the main mechanism that dissipates energy input into ocean waves by wind and transferred across the spectrum by nonlinearity. It determines the properties of a sea state and plays a crucial role in ocean-atmosphere interaction, ocean pollution, and rogue waves. Owing to its turbulent nature, wave breaking remains too computationally demanding to solve using direct numerical simulations except in simple, short-duration circumstances. To overcome this challenge, we present a blended machine learning framework in which a physics-based nonlinear evolution model for deep-water, non-breaking waves and a recurrent neural network are combined to predict the evolution of breaking waves. We use wave tank measurements rather than simulations to provide training data and use a long short-term memory neural network to apply a finite-domain correction to the evolution model. Our blended machine learning framework gives excellent predictions of breaking and its effects on wave evolution, including for external data.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-022-30025-zen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Science and Business Media LLCen_US
dc.subjectGeneral Physics and Astronomyen_US
dc.subjectGeneral Biochemistry, Genetics and Molecular Biologyen_US
dc.subjectGeneral Chemistryen_US
dc.subjectMultidisciplinaryen_US
dc.titleNonlinear wave evolution with data-driven breakingen_US
dc.typeArticleen_US
dc.identifier.citationEeltink, D., Branger, H., Luneau, C. et al. Nonlinear wave evolution with data-driven breaking. Nat Commun 13, 2343 (2022).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-04-18T21:00:39Z
dspace.orderedauthorsEeltink, D; Branger, H; Luneau, C; He, Y; Chabchoub, A; Kasparian, J; van den Bremer, TS; Sapsis, TPen_US
dspace.date.submission2024-04-18T21:00:41Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record