Show simple item record

dc.contributor.authorXie, Tian
dc.contributor.authorFrance-Lanord, Arthur
dc.contributor.authorWang, Yanming
dc.contributor.authorLopez, Jeffrey
dc.contributor.authorStolberg, Michael A.
dc.contributor.authorHill, Megan
dc.contributor.authorLeverick, Graham Michael
dc.contributor.authorGomez-Bombarelli, Rafael
dc.contributor.authorJohnson, Jeremiah A.
dc.contributor.authorShao-Horn, Yang
dc.contributor.authorGrossman, Jeffrey C.
dc.date.accessioned2024-04-26T19:19:27Z
dc.date.available2024-04-26T19:19:27Z
dc.date.issued2022-06-14
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/154301
dc.description.abstractPolymer electrolytes are promising candidates for the next generation lithium-ion battery technology. Large scale screening of polymer electrolytes is hindered by the significant cost of molecular dynamics (MD) simulation in amorphous systems: the amorphous structure of polymers requires multiple, repeated sampling to reduce noise and the slow relaxation requires long simulation time for convergence. Here, we accelerate the screening with a multi-task graph neural network that learns from a large amount of noisy, unconverged, short MD data and a small number of converged, long MD data. We achieve accurate predictions of 4 different converged properties and screen a space of 6247 polymers that is orders of magnitude larger than previous computational studies. Further, we extract several design principles for polymer electrolytes and provide an open dataset for the community. Our approach could be applicable to a broad class of material discovery problems that involve the simulation of complex, amorphous materials.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-022-30994-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Science and Business Media LLCen_US
dc.titleAccelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated propertiesen_US
dc.typeArticleen_US
dc.identifier.citationXie, T., France-Lanord, A., Wang, Y. et al. Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties. Nat Commun 13, 3415 (2022).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-04-26T19:11:32Z
dspace.orderedauthorsXie, T; France-Lanord, A; Wang, Y; Lopez, J; Stolberg, MA; Hill, M; Leverick, GM; Gomez-Bombarelli, R; Johnson, JA; Shao-Horn, Y; Grossman, JCen_US
dspace.date.submission2024-04-26T19:11:36Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record