MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fractional integration and optimal estimates for elliptic systems

Author(s)
Hernandez, Felipe; Spector, Daniel
Thumbnail
Download526_2024_Article_2722.pdf (455.7Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
In this paper we give an affirmative answer to the Euclidean analogue of a question of Bourgain and Brezis concerning the optimal Lorentz estimate for a Div–Curl system: If $$F \in L^1(\mathbb {R}^3;\mathbb {R}^3)$$ F ∈ L 1 ( R 3 ; R 3 ) satisfies $$\text {div}F=0$$ div F = 0 in the sense of distributions, then the function $$Z=\text {curl} (-\Delta )^{-1} F$$ Z = curl ( - Δ ) - 1 F satisfies $$\begin{aligned} \text {curl } Z&= F \\ \text {div } Z&= 0 \end{aligned}$$ curl Z = F div Z = 0 and there exists a constant $$C>0$$ C > 0 such that $$\begin{aligned} \Vert Z\Vert _{L^{3/2,1}(\mathbb {R}^3;\mathbb {R}^3)} \le C\Vert F\Vert _{L^{1}(\mathbb {R}^3;\mathbb {R}^3)}. \end{aligned}$$ ‖ Z ‖ L 3 / 2 , 1 ( R 3 ; R 3 ) ≤ C ‖ F ‖ L 1 ( R 3 ; R 3 ) . Our proof relies on a new endpoint Hardy–Littlewood–Sobolev inequality for divergence free measures which we obtain via a result of independent interest, an atomic decomposition of such objects.
Date issued
2024-04-26
URI
https://hdl.handle.net/1721.1/154302
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Science and Business Media LLC
Citation
Calculus of Variations and Partial Differential Equations. 2024 Apr 26;63(5):117
Version: Final published version
ISSN
0944-2669
1432-0835

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.