dc.contributor.author | Hernandez, Felipe | |
dc.contributor.author | Spector, Daniel | |
dc.date.accessioned | 2024-04-29T15:05:54Z | |
dc.date.available | 2024-04-29T15:05:54Z | |
dc.date.issued | 2024-04-26 | |
dc.identifier.issn | 0944-2669 | |
dc.identifier.issn | 1432-0835 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/154302 | |
dc.description.abstract | In this paper we give an affirmative answer to the Euclidean analogue of a question of Bourgain and Brezis concerning the optimal Lorentz estimate for a Div–Curl system: If
$$F \in L^1(\mathbb {R}^3;\mathbb {R}^3)$$
F
∈
L
1
(
R
3
;
R
3
)
satisfies
$$\text {div}F=0$$
div
F
=
0
in the sense of distributions, then the function
$$Z=\text {curl} (-\Delta )^{-1} F$$
Z
=
curl
(
-
Δ
)
-
1
F
satisfies
$$\begin{aligned} \text {curl } Z&= F \\ \text {div } Z&= 0 \end{aligned}$$
curl
Z
=
F
div
Z
=
0
and there exists a constant
$$C>0$$
C
>
0
such that
$$\begin{aligned} \Vert Z\Vert _{L^{3/2,1}(\mathbb {R}^3;\mathbb {R}^3)} \le C\Vert F\Vert _{L^{1}(\mathbb {R}^3;\mathbb {R}^3)}. \end{aligned}$$
‖
Z
‖
L
3
/
2
,
1
(
R
3
;
R
3
)
≤
C
‖
F
‖
L
1
(
R
3
;
R
3
)
.
Our proof relies on a new endpoint Hardy–Littlewood–Sobolev inequality for divergence free measures which we obtain via a result of independent interest, an atomic decomposition of such objects. | en_US |
dc.publisher | Springer Science and Business Media LLC | en_US |
dc.relation.isversionof | 10.1007/s00526-024-02722-8 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | Fractional integration and optimal estimates for elliptic systems | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Calculus of Variations and Partial Differential Equations. 2024 Apr 26;63(5):117 | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.identifier.mitlicense | PUBLISHER_CC | |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2024-04-28T03:15:40Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s) | |
dspace.embargo.terms | N | |
dspace.date.submission | 2024-04-28T03:15:40Z | |
mit.journal.volume | 63 | en_US |
mit.journal.issue | 5 | en_US |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |