Show simple item record

dc.contributor.authorHernandez, Felipe
dc.contributor.authorSpector, Daniel
dc.date.accessioned2024-04-29T15:05:54Z
dc.date.available2024-04-29T15:05:54Z
dc.date.issued2024-04-26
dc.identifier.issn0944-2669
dc.identifier.issn1432-0835
dc.identifier.urihttps://hdl.handle.net/1721.1/154302
dc.description.abstractIn this paper we give an affirmative answer to the Euclidean analogue of a question of Bourgain and Brezis concerning the optimal Lorentz estimate for a Div–Curl system: If $$F \in L^1(\mathbb {R}^3;\mathbb {R}^3)$$ F ∈ L 1 ( R 3 ; R 3 ) satisfies $$\text {div}F=0$$ div F = 0 in the sense of distributions, then the function $$Z=\text {curl} (-\Delta )^{-1} F$$ Z = curl ( - Δ ) - 1 F satisfies $$\begin{aligned} \text {curl } Z&= F \\ \text {div } Z&= 0 \end{aligned}$$ curl Z = F div Z = 0 and there exists a constant $$C>0$$ C > 0 such that $$\begin{aligned} \Vert Z\Vert _{L^{3/2,1}(\mathbb {R}^3;\mathbb {R}^3)} \le C\Vert F\Vert _{L^{1}(\mathbb {R}^3;\mathbb {R}^3)}. \end{aligned}$$ ‖ Z ‖ L 3 / 2 , 1 ( R 3 ; R 3 ) ≤ C ‖ F ‖ L 1 ( R 3 ; R 3 ) . Our proof relies on a new endpoint Hardy–Littlewood–Sobolev inequality for divergence free measures which we obtain via a result of independent interest, an atomic decomposition of such objects.en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/s00526-024-02722-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleFractional integration and optimal estimates for elliptic systemsen_US
dc.typeArticleen_US
dc.identifier.citationCalculus of Variations and Partial Differential Equations. 2024 Apr 26;63(5):117en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-04-28T03:15:40Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-04-28T03:15:40Z
mit.journal.volume63en_US
mit.journal.issue5en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record