MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biofilm formation of Pseudomonas aeruginosa in spaceflight is minimized on lubricant impregnated surfaces

Author(s)
Flores, Pamela; McBride, Samantha A.; Galazka, Jonathan M.; Varanasi, Kripa K.; Zea, Luis
Thumbnail
DownloadPublished version (2.632Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The undesirable, yet inevitable, presence of bacterial biofilms in spacecraft poses a risk to the proper functioning of systems and to astronauts’ health. To mitigate the risks that arise from them, it is important to understand biofilms’ behavior in microgravity. As part of the Space Biofilms project, biofilms of <jats:italic>Pseudomonas aeruginosa</jats:italic> were grown in spaceflight over material surfaces. Stainless Steel 316 (SS316) and passivated SS316 were tested for their relevance as spaceflight hardware components, while a lubricant impregnated surface (LIS) was tested as potential biofilm control strategy. The morphology and gene expression of biofilms were characterized. Biofilms in microgravity are less robust than on Earth. LIS strongly inhibits biofilm formation compared to SS. Furthermore, this effect is even greater in spaceflight than on Earth, making LIS a promising option for spacecraft use. Transcriptomic profiles for the different conditions are presented, and potential mechanisms of biofilm reduction on LIS are discussed.
Date issued
2023-08-16
URI
https://hdl.handle.net/1721.1/154925
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
npj Microgravity
Publisher
Springer Science and Business Media LLC
Citation
Flores, P., McBride, S.A., Galazka, J.M. et al. Biofilm formation of Pseudomonas aeruginosa in spaceflight is minimized on lubricant impregnated surfaces. npj Microgravity 9, 66 (2023).
Version: Final published version
ISSN
2373-8065

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.