MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Harmonic Spinors in the Ricci Flow

Author(s)
Baldauf, Julius
Thumbnail
Download12220_2024_Article_1665.pdf (362.2Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This paper provides a new definition of the Ricci flow on closed manifolds admitting harmonic spinors. It is shown that Perelman’s Ricci flow entropy can be expressed in terms of the energy of harmonic spinors in all dimensions, and in four dimensions, in terms of the energy of Seiberg–Witten monopoles. Consequently, Ricci flow is the gradient flow of these energies. The proof relies on a weighted version of the monopole equations, introduced here. Further, a sharp parabolic Hitchin–Thorpe inequality for simply-connected, spin 4-manifolds is proven. From this, it follows that the normalized Ricci flow on any exotic K3 surface must become singular.
Date issued
2024-05-16
URI
https://hdl.handle.net/1721.1/155001
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
The Journal of Geometric Analysis
Publisher
Springer Science and Business Media LLC
Citation
Baldauf, J. Harmonic Spinors in the Ricci Flow. J Geom Anal 34, 235 (2024).
Version: Final published version
ISSN
1050-6926
1559-002X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.