Show simple item record

dc.contributor.authorBaldauf, Julius
dc.date.accessioned2024-05-20T15:51:12Z
dc.date.available2024-05-20T15:51:12Z
dc.date.issued2024-05-16
dc.identifier.issn1050-6926
dc.identifier.issn1559-002X
dc.identifier.urihttps://hdl.handle.net/1721.1/155001
dc.description.abstractThis paper provides a new definition of the Ricci flow on closed manifolds admitting harmonic spinors. It is shown that Perelman’s Ricci flow entropy can be expressed in terms of the energy of harmonic spinors in all dimensions, and in four dimensions, in terms of the energy of Seiberg–Witten monopoles. Consequently, Ricci flow is the gradient flow of these energies. The proof relies on a weighted version of the monopole equations, introduced here. Further, a sharp parabolic Hitchin–Thorpe inequality for simply-connected, spin 4-manifolds is proven. From this, it follows that the normalized Ricci flow on any exotic K3 surface must become singular.en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/s12220-024-01665-yen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleHarmonic Spinors in the Ricci Flowen_US
dc.typeArticleen_US
dc.identifier.citationBaldauf, J. Harmonic Spinors in the Ricci Flow. J Geom Anal 34, 235 (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalThe Journal of Geometric Analysisen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-05-19T03:13:06Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-05-19T03:13:06Z
mit.journal.volume34en_US
mit.journal.issue8en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record