MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Doodles and Blobs on a Ruled Page: Convex Quasi-envelops of Traversing Flows on Surfaces

Author(s)
Katz, Gabriel
Thumbnail
Download40598_2024_Article_249.pdf (1.540Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Let A denote the cylinder $${\mathbb {R}} \times S^1$$ R × S 1 or the band $${\mathbb {R}} \times I$$ R × I , where I stands for the closed interval. We consider 2-moderate immersions of closed curves (“doodles”) and compact surfaces (“blobs”) in A, up to cobordisms that also are 2-moderate immersions in $$A \times [0, 1]$$ A × [ 0 , 1 ] of surfaces and solids. By definition, the 2-moderate immersions of curves and surfaces do not have tangencies of order $$\ge 3$$ ≥ 3 to the fibers of the obvious projections $$A \rightarrow S^1$$ A → S 1 ,  $$A \times [0, 1] \rightarrow S^1 \times [0, 1]$$ A × [ 0 , 1 ] → S 1 × [ 0 , 1 ] or $$A \rightarrow I$$ A → I ,  $$A \times [0, 1] \rightarrow I \times [0, 1]$$ A × [ 0 , 1 ] → I × [ 0 , 1 ] . These bordisms come in different flavors: in particular, we consider one flavor based on regular embeddings of doodles and blobs in A. We compute the bordisms of regular embeddings and construct many invariants that distinguish between the bordisms of immersions and embeddings. In the case of oriented doodles on $$A= {\mathbb {R}} \times I$$ A = R × I , our computations of 2-moderate immersion bordisms $$\textbf{OC}^{\textsf{imm}}_{\mathsf {moderate \le 2}}(A)$$ OC moderate ≤ 2 imm ( A ) are near complete: we show that they can be described by an exact sequence of abelian groups $$\begin{aligned} 0 \rightarrow {\textbf{K}} \rightarrow \textbf{OC}^{\textsf{imm}}_{\mathsf {moderate \le 2}}(A)\big /\textbf{OC}^{\textsf{emb}}_{\mathsf {moderate \le 2}}(A) {\mathop {\longrightarrow }\limits ^{{\mathcal {I}} \rho }} {\mathbb {Z}} \times {\mathbb {Z}} \rightarrow 0, \end{aligned}$$ 0 → K → OC moderate ≤ 2 imm ( A ) / OC moderate ≤ 2 emb ( A ) ⟶ I ρ Z × Z → 0 , where $$\textbf{OC}^{\textsf{emb}}_{\mathsf {moderate \le 2}}(A) \approx {\mathbb {Z}} \times {\mathbb {Z}}$$ OC moderate ≤ 2 emb ( A ) ≈ Z × Z , the epimorphism $${\mathcal {I}} \rho $$ I ρ counts different types of crossings of immersed doodles, and the kernel $${\textbf{K}}$$ K contains the group $$({\mathbb {Z}})^\infty $$ ( Z ) ∞ whose generators are described explicitly.
Date issued
2024-05-16
URI
https://hdl.handle.net/1721.1/155007
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Arnold Mathematical Journal
Publisher
Springer Science and Business Media LLC
Citation
Katz, G. Doodles and Blobs on a Ruled Page: Convex Quasi-envelops of Traversing Flows on Surfaces. Arnold Math J. (2024).
Version: Final published version
ISSN
2199-6792
2199-6806

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.