Show simple item record

dc.contributor.authorKatz, Gabriel
dc.date.accessioned2024-05-20T18:46:12Z
dc.date.available2024-05-20T18:46:12Z
dc.date.issued2024-05-16
dc.identifier.issn2199-6792
dc.identifier.issn2199-6806
dc.identifier.urihttps://hdl.handle.net/1721.1/155007
dc.description.abstractLet A denote the cylinder $${\mathbb {R}} \times S^1$$ R × S 1 or the band $${\mathbb {R}} \times I$$ R × I , where I stands for the closed interval. We consider 2-moderate immersions of closed curves (“doodles”) and compact surfaces (“blobs”) in A, up to cobordisms that also are 2-moderate immersions in $$A \times [0, 1]$$ A × [ 0 , 1 ] of surfaces and solids. By definition, the 2-moderate immersions of curves and surfaces do not have tangencies of order $$\ge 3$$ ≥ 3 to the fibers of the obvious projections $$A \rightarrow S^1$$ A → S 1 ,  $$A \times [0, 1] \rightarrow S^1 \times [0, 1]$$ A × [ 0 , 1 ] → S 1 × [ 0 , 1 ] or $$A \rightarrow I$$ A → I ,  $$A \times [0, 1] \rightarrow I \times [0, 1]$$ A × [ 0 , 1 ] → I × [ 0 , 1 ] . These bordisms come in different flavors: in particular, we consider one flavor based on regular embeddings of doodles and blobs in A. We compute the bordisms of regular embeddings and construct many invariants that distinguish between the bordisms of immersions and embeddings. In the case of oriented doodles on $$A= {\mathbb {R}} \times I$$ A = R × I , our computations of 2-moderate immersion bordisms $$\textbf{OC}^{\textsf{imm}}_{\mathsf {moderate \le 2}}(A)$$ OC moderate ≤ 2 imm ( A ) are near complete: we show that they can be described by an exact sequence of abelian groups $$\begin{aligned} 0 \rightarrow {\textbf{K}} \rightarrow \textbf{OC}^{\textsf{imm}}_{\mathsf {moderate \le 2}}(A)\big /\textbf{OC}^{\textsf{emb}}_{\mathsf {moderate \le 2}}(A) {\mathop {\longrightarrow }\limits ^{{\mathcal {I}} \rho }} {\mathbb {Z}} \times {\mathbb {Z}} \rightarrow 0, \end{aligned}$$ 0 → K → OC moderate ≤ 2 imm ( A ) / OC moderate ≤ 2 emb ( A ) ⟶ I ρ Z × Z → 0 , where $$\textbf{OC}^{\textsf{emb}}_{\mathsf {moderate \le 2}}(A) \approx {\mathbb {Z}} \times {\mathbb {Z}}$$ OC moderate ≤ 2 emb ( A ) ≈ Z × Z , the epimorphism $${\mathcal {I}} \rho $$ I ρ counts different types of crossings of immersed doodles, and the kernel $${\textbf{K}}$$ K contains the group $$({\mathbb {Z}})^\infty $$ ( Z ) ∞ whose generators are described explicitly.en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/s40598-024-00249-6en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleDoodles and Blobs on a Ruled Page: Convex Quasi-envelops of Traversing Flows on Surfacesen_US
dc.typeArticleen_US
dc.identifier.citationKatz, G. Doodles and Blobs on a Ruled Page: Convex Quasi-envelops of Traversing Flows on Surfaces. Arnold Math J. (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalArnold Mathematical Journalen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-05-19T03:13:27Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-05-19T03:13:27Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record