MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Why federated learning will do little to overcome the deeply embedded biases in clinical medicine

Author(s)
Sauer, Christopher Martin; Pucher, Gernot; Celi, Leo Anthony
Thumbnail
Download134_2024_Article_7491.pdf (1.261Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Date issued
2024-06-03
URI
https://hdl.handle.net/1721.1/155222
Department
Harvard--MIT Program in Health Sciences and Technology. Laboratory for Computational Physiology
Journal
Intensive Care Medicine
Publisher
Springer Science and Business Media LLC
Citation
Sauer, C.M., Pucher, G. & Celi, L.A. Why federated learning will do little to overcome the deeply embedded biases in clinical medicine. Intensive Care Med (2024).
Version: Final published version
ISSN
0342-4642
1432-1238

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.