Show simple item record

dc.contributor.authorSauer, Christopher Martin
dc.contributor.authorPucher, Gernot
dc.contributor.authorCeli, Leo Anthony
dc.date.accessioned2024-06-10T19:39:48Z
dc.date.available2024-06-10T19:39:48Z
dc.date.issued2024-06-03
dc.identifier.issn0342-4642
dc.identifier.issn1432-1238
dc.identifier.urihttps://hdl.handle.net/1721.1/155222
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/s00134-024-07491-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleWhy federated learning will do little to overcome the deeply embedded biases in clinical medicineen_US
dc.typeArticleen_US
dc.identifier.citationSauer, C.M., Pucher, G. & Celi, L.A. Why federated learning will do little to overcome the deeply embedded biases in clinical medicine. Intensive Care Med (2024).en_US
dc.contributor.departmentHarvard--MIT Program in Health Sciences and Technology. Laboratory for Computational Physiology
dc.relation.journalIntensive Care Medicineen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2024-06-09T03:10:46Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-06-09T03:10:45Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record