MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Arithmetic fundamental lemma for the spherical Hecke algebra

Author(s)
Li, Chao; Rapoport, Michael; Zhang, Wei
Thumbnail
Download229_2024_Article_1572.pdf (660.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We define Hecke correspondences and Hecke operators on unitary RZ spaces and study their basic geometric properties, including a commutativity conjecture on Hecke operators. Then we formulate the arithmetic fundamental lemma conjecture for the spherical Hecke algebra. We also formulate a conjecture on the abundance of spherical Hecke functions with identically vanishing first derivative of orbital integrals. We prove these conjectures for the case U(1)×U(2).
Date issued
2024-06-20
URI
https://hdl.handle.net/1721.1/155304
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
manuscripta mathematica
Publisher
Springer Science and Business Media LLC
Citation
Li, C., Rapoport, M. & Zhang, W. Arithmetic fundamental lemma for the spherical Hecke algebra. manuscripta math. (2024).
Version: Final published version
ISSN
0025-2611
1432-1785

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.