Show simple item record

dc.contributor.authorLi, Chao
dc.contributor.authorRapoport, Michael
dc.contributor.authorZhang, Wei
dc.date.accessioned2024-06-25T20:39:08Z
dc.date.available2024-06-25T20:39:08Z
dc.date.issued2024-06-20
dc.identifier.issn0025-2611
dc.identifier.issn1432-1785
dc.identifier.urihttps://hdl.handle.net/1721.1/155304
dc.description.abstractWe define Hecke correspondences and Hecke operators on unitary RZ spaces and study their basic geometric properties, including a commutativity conjecture on Hecke operators. Then we formulate the arithmetic fundamental lemma conjecture for the spherical Hecke algebra. We also formulate a conjecture on the abundance of spherical Hecke functions with identically vanishing first derivative of orbital integrals. We prove these conjectures for the case U(1)×U(2).en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/s00229-024-01572-0en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleArithmetic fundamental lemma for the spherical Hecke algebraen_US
dc.typeArticleen_US
dc.identifier.citationLi, C., Rapoport, M. & Zhang, W. Arithmetic fundamental lemma for the spherical Hecke algebra. manuscripta math. (2024).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalmanuscripta mathematicaen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2024-06-23T03:16:35Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2024-06-23T03:16:35Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record