MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generative models for simulation of KamLAND-Zen

Author(s)
Fu, Zhenghao; Grant, Christopher; Krawiec, Dominika M.; Li, Aobo; Winslow, Lindley A.
Thumbnail
Download10052_2024_Article_12980.pdf (1.559Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The next generation of searches for neutrinoless double beta decay (0𝜈𝛽𝛽 ) are poised to answer deep questions on the nature of neutrinos and the source of the Universe’s matter–antimatter asymmetry. They will be looking for event rates of less than one event per ton of instrumented isotope per year. To claim discovery, accurate and efficient simulations of detector events that mimic 0𝜈𝛽𝛽 is critical. Traditional Monte Carlo (MC) simulations can be supplemented by machine-learning-based generative models. This work describes the performance of generative models that we designed for monolithic liquid scintillator detectors like KamLAND to produce accurate simulation data without a predefined physics model. We present their current ability to recover low-level features and perform interpolation. In the future, the results of these generative models can be used to improve event classification and background rejection by providing high-quality abundant generated data.
Date issued
2024-06-27
URI
https://hdl.handle.net/1721.1/155583
Department
Massachusetts Institute of Technology. Laboratory for Nuclear Science
Journal
The European Physical Journal C
Publisher
Springer Science and Business Media LLC
Citation
Fu, Z., Grant, C., Krawiec, D.M. et al. Generative models for simulation of KamLAND-Zen. Eur. Phys. J. C 84, 651 (2024).
Version: Final published version
ISSN
1434-6052

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.